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Preface and Acknowledgments

Over the past few decades, wireless communications and sensing technolo-
gies have experienced unprecedented advancements, driven by the increasing
demand for high-speed, intelligent, and highly integrated systems. With the
ongoing evolution toward 6G and beyond, there is a growing need to develop
more efficient and adaptive solutions that can seamlessly integrate communica-
tion and sensing capabilities. This integration is expected to play a crucial role
in enabling next-generation applications such as autonomous driving, intelli-
gent transportation systems, smart cities, industrial automation, and digital
healthcare.

This book was conceived with the goal of providing a comprehensive and
structured introduction to the fundamentals of wireless communications and
sensing, along with cutting-edge signal processing and machine learning tech-
niques that enhance system performance. It aims to serve as a bridge between
theoretical foundations and practical implementations, offering readers both
the fundamental principles and advanced research trends in the field.

Scope and Structure of the Book

To facilitate a clear understanding of the subject, the book is organized into
four major parts, each focusing on a specific aspect of wireless communication
and sensing:

1. Wireless Communication Basics – The first part lays the foundation
by covering essential concepts such as wireless channel modeling,
signal propagation, large- and small-scale fading effects, multiple-
input multiple-output (MIMO) systems, and orthogonal frequency
division multiplexing (OFDM) principles. It also delves into interfer-
ence management and multiple access techniques, which are critical
for ensuring reliable and high-capacity wireless networks.

2. Radar Sensing Basics – The second part introduces the fundamen-
tal principles of radar sensing, including waveform design, range
and Doppler estimation, target detection, and MIMO radar pro-
cessing. Given the increasing importance of radar-based sensing in
applications like automotive safety and environmental monitoring,
this section provides a solid understanding of how radar systems
function and how they can be optimized for various scenarios.

ix
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3. Integrated Sensing and Communication (ISAC) Systems – Recog-
nizing the growing interest in jointly designing communication and
sensing systems, the third part of the book focuses on ISAC ar-
chitectures, design principles, and performance trade-offs. Topics
include radar-assisted communications, communication-aided sens-
ing, waveform design strategies, and resource allocation techniques.
These discussions provide insights into how wireless networks can be
leveraged not only for data transmission but also for high-precision
environmental awareness.

4. Learning-Based Enhancements – The final part explores the role of
deep learning in advancing wireless communications and sensing.
It introduces key machine learning techniques, discusses their ap-
plications in channel estimation, beam selection, interference mit-
igation, and spectrum sensing, and highlights how learning-based
approaches can enhance ISAC systems. With the rapid growth of
artificial intelligence (AI)-driven solutions, this section provides a
timely perspective on how emerging technologies can reshape the
future of wireless networks.

Intended Audience and Applications

This book is intended for graduate students, researchers, and industry pro-
fessionals who seek an in-depth understanding of modern wireless communi-
cations and sensing. The material is designed to be accessible to those with a
background in electrical engineering, signal processing, or computer science,
and it can serve as a valuable reference for both academic and practical ap-
plications.

• For students, this book provides a structured learning path that starts with
fundamental concepts and progresses to state-of-the-art techniques, mak-
ing it suitable for courses on wireless communications, radar sensing, and
machine learning applications in signal processing.

• For researchers, it offers a comprehensive review of current challenges and
emerging solutions, making it a useful resource for exploring new research
directions in ISAC and learning-based wireless technologies.

• For industry professionals, particularly those working in telecommunica-
tions, automotive sensing, and AI-driven wireless systems, this book provides
practical insights, which can help in designing next-generation communica-
tion and sensing solutions.

Contributions and Acknowledgments

The development of this book has been a collaborative effort, and we are
grateful to the many individuals and organizations that have supported this
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work. We extend our sincere appreciation to our colleagues and research col-
laborators for their valuable feedback and insights, which have helped refine
the technical content of the book. We also acknowledge the support of our
institutions and funding agencies, which have played a crucial role in enabling
our research and academic endeavors.

Finally, we are deeply appreciative of our families and friends for their un-
wavering encouragement and patience throughout the writing process. Their
support has been instrumental in bringing this book to completion.

We hope that this book serves as a useful and inspiring resource for read-
ers interested in the intersection of wireless communications, sensing, and
machine learning. As these fields continue to evolve, we look forward to seeing
new innovations and contributions from the next generation of engineers and
researchers.
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1

Introduction

1.1 6G visions

In recent years, information and communication technology (ICT) has been
developing at an unprecedented rate in human history. Many highly antici-
pated applications such as fully automated driving [1–3], full sensory digital
sensing and reality [4–6], eHealth [7,8], and smart manufacturing/construction
[9–13] are actively being developed. Although some of these applications may
still be in their infancy, it is certain that they will transform our daily lives
fundamentally and lead human history into a new chapter [14–16]. Upon an-
alyzing these applications, one common factor becomes apparent: A powerful
and reliable networking and communication system must act as a backbone
to support these applications and comply with any service requirements they
may have. As a result, even though we have just entered a new era of 5G
communications and are currently enjoying the benefits of 5G commercial
uses, experts from academia and industry are already thinking about what
6G will be and investigating the roadmap toward 6G. They are also exploring
emerging trends and requirements, as well as various enabling techniques and
architectures to make the aforementioned applications come true [17–20].

The Technologies for Network 2030 group within the International
Telecommunication Union-Telecommunication (ITU-T) has outlined a vision
for 6G communications, with the goal of providing a highly digitalized, intelli-
gent, and globally data-driven platform enabled by near-instant and unlimited
full wireless connectivity [18,21]. This platform should integrate different ICT
functionalities such as sensing (including following applications, such as po-
sitioning, navigation, and imaging), communication, computing, caching, and
control to support all full-vertical applications. In Figure 1.1, we provide a
capability comparison between the 5G communication system and the 6G
communication system to highlight the contributions of the 6G communica-
tion system and illustrate the main quality of service (QoS) requirements of
different 6G usage scenarios. The basic goal of the 6G communication system is
to provide data rate improvements, including 5x average spectrum efficiency,
10x user-experienced data rate, and at least 50x peak data rate. Further-
more, the 6G communication system also promises to offer seamless and low-
latency communications, enabling more novel applications. Depending on the
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2 Introduction

FIGURE 1.1
The promised QoS requirements and typical scenarios of 5G and 6G commu-
nication systems.

requirements of different applications, 6G defines five typical usage scenarios:
further enhanced mobile broadband (FeMBB), ultra-massive machine-type
communications (umMTC), extremely reliable and low-latency communica-
tions (ERLLC), long-distance and high-mobility communications (LDHMC),
and extremely low-power communications (ELPC). In light of this direction,
the 6G communication system aims to provide appropriate QoS promises to
support different types of applications. Some applications may only have a
single QoS requirement to be satisfied, while others may need several QoS
guarantees to function appropriately. For example, with the enhanced area
traffic capacity and network energy efficiency, fine-grained Internet of Every-
thing [22] can be realized, monitoring a large area by connecting to a number
of high-resolution sensors simultaneously to allow precise operations. In ad-
dition, with the improved connectivity to offer low-latency communication to
moving targets, fully automated driving [1] is starting to be realized to provide
real-time centralized driving operations.

Although 6G presents an exciting blueprint for the future intelligent in-
formation society, meeting its harsh QoS requirements is crucial to fulfill
its promise of providing a reliable and stable platform to support upcoming
applications. Generally, there are two straightforward directions to improve
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communication systems’ capabilities: (i) increasing system bandwidth and/or
(ii) improving spectrum efficiency. On the one hand, technologies like Tera-
hertz (THz) communications [23, 24] and laser communications [25–27] can
expand the resulting spectrum resources for the 6G communication system.
On the other hand, technologies like very-large-scale antenna arrays, for exam-
ple, spatial modulation multiple-input multiple-output (SM-MIMO) [28, 29],
large intelligent surfaces (LIS) [30,31], and orbital angular momentum (OAM)
multiplexing [32,33] aim to provide improved spectrum efficiency for superior
capabilities of 6G communication systems. In addition to these two directions,
novel ICT technologies like advanced sensing [34, 35], blockchain-based spec-
trum sharing [36, 37], and quantum computing [38, 39] will also be employed
to enhance the security and efficiency of the 6G communication system. For
interested readers, we provide a brief discussion of each technology below.
Increasing system bandwidth: Expanding system bandwidth is essen-
tial to enhance communication system capability. The millimeter-wave band
(mmWave) from 24.25 GHz to 52.6 GHz was first employed in the 5G commu-
nication system, resulting in 5G QoS improvements. In the 6G communication
system, researchers are exploring the use of higher-frequency bands ranging
from 0.1 to 10 THz (i.e., THz band from 10 GHz to 1000 GHz) to achieve
multi-Tb/s data transmission. The THz band provides the potential for hun-
dreds of giga-hertz bands to users, making it a crucial aspect of 6G develop-
ment. Due to the short wavelength of THz bands, a single base station can
utilize more than 10,000 antenna elements for wireless communication. Highly
directional transmission using super-narrow beams can concentrate transmit
power in a narrow direction to overcome the high path-loss property of THz
communications. This results in improved interference control and transmis-
sion security. Consequently, THz communication [23,24] has become a major
research topic in the development of the 6G communication system. In addi-
tion to THz communications, the 6G communication system aims to provide
seamless connectivity to multiple devices simultaneously (i.e., umMTC). To
achieve this, the system aims to integrate terrestrial communications with
space/air/underwater communications to form a four-tier integrated commu-
nication platform. Laser communication is more suitable than electromagnetic
wave signals for free-space and underwater propagation environments, and it
will be employed to support wireless communications in those environments.
Interested readers can refer to [23–27] for more details on the current devel-
opment of these technologies.
Improving spectrum efficiency: In addition to increasing radio resources,
the 6G communication system aims to improve spectrum efficiency with a
fixed amount of resources. One way to achieve this is by utilizing SM-MIMO
with over 10,000 antenna elements, which is well-suited for THz communica-
tions. Interested readers can refer to [28,29] for more information on this topic.
Two new design concepts, LIS and OAM, are also being developed to improve
spectrum efficiency in the 6G communication system. The LIS concept utilizes
massive passive reflecting elements with controllable phase or amplitude on a
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spatially continuous aperture, optimizing performance based on surrounding
radio environments. Several studies have demonstrated superior performance
compared to conventional communication systems by incorporating the LIS
design concept. For more information, readers can refer to refs. [30,31]. In the
OAM multiplexing technology, multiple data streams are transmitted simul-
taneously on the same radiofrequency resources by using a set of orthogonal
electromagnetic waves, exploiting the angular momentum of the wave as a
new degree of freedom. Interested readers can refer to refs. [32, 33] for more
information on this topic.
Novel ICT technologies: After selecting appropriate technologies based
on the above two perspectives, 6G communication systems can be further
enhanced by incorporating novel ICT technologies. For example, in terms
of blockchain-based spectrum sharing, the conventional centralized spectrum
sharing approach becomes impractical when billions of machine-type devices
are connected to 6G communication systems. As an alternative, original
spectrum-sensing mechanisms can be employed to enable the sharing of under-
utilized spectrum resources with numerous devices, which not only increases
system bandwidth from the device’s perspective but also improves spectrum
efficiency from the system’s perspective. By combining blockchain technol-
ogy, spectrum sharing can be implemented on a distributed platform that
is more resilient to cyberattacks and malicious devices than traditional cen-
tralized spectrum-sharing mechanisms. In addition, a financial compensation
mechanism can be introduced to incentivize more devices to participate in
the spectrum-sharing mechanism. Interested readers can find more details on
this topic in refs. [36, 37]. The other example is in terms of computing re-
sources; quantum computing can be used to provide real-time computing re-
sults to optimize 6G communication systems’ planning and operations to serve
users. Unlike traditional computing, quantum computing employs qubits to
represent information, enabling parallel computing to be performed easily.
Quantum computing can aid communication system decisions by providing
incredible accelerations compared to traditional methods. Interested readers
can find more details on this topic in refs. [38, 39]. By leveraging the collab-
oration of these technologies, 6G communication systems can meet the harsh
QoS requirements of future applications.

Besides other ICT technologies, such as the aforementioned blockchain
and quantum computing technologies, we put our main focus on the intersec-
tion of wireless communication and advanced sensing in this book because of
the importance and practicality of this specific emerging research direction.
From the perspective of its importance, traffic injuries are a major concern
worldwide [40, 41], causing the loss of about 2.4 lives every minute, as re-
ported by the World Health Organization. To mitigate this situation, a range
of existing and forthcoming applications, such as advanced driver assistance
systems (ADAS) [42,43], intelligent transportation systems (ITS) [44,45], and
even fully automated driving [1], have been developed to improve road user
safety and efficiency. By supporting information acquisition and exchange of
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FIGURE 1.2
The considered scenario with wireless connections and automotive sensing.

these applications, a deeply integrated system with wireless communication
and advanced sensing capability can facilitate their deployment and operation
in vehicular scenarios, thereby contributing to the enhancement of road safety
and efficiency. On the other hand, from the perspective of its practicality,
vehicular applications such as ADAS and ITS are more mature than other
applications and are already available to the public, with some vehicles fea-
turing level-3 automated driving assistance functionalities (i.e., conditionally
automated driving assistant). In addition, the United States Department of
Transportation has deployed several ITS applications, including speed man-
agement, human service transportation coordination, and automated speed
enforcement systems, to assist road users in the country. As a result, research
outcomes related to such systems in vehicular scenarios can be implemented
immediately, benefiting society by significantly improving the safety and ef-
ficiency of road users. Therefore, this book aims to provide good material to
let readers catch up with this emerging and promising research topic.

Focusing on real-world vehicular scenarios, Figure 1.2 illustrates the con-
sidered scenario where multiple vehicles are operating on roads. To support
various applications, such as ADAS and ITS, automotive sensing and wireless
connections are extensively utilized to obtain information from the environ-
ment and surrounding objects, including pedestrians, roadside units, and other
vehicles. While other key technologies can still be incorporated, sensing and
communications are undoubtedly crucial components of such systems. In par-
ticular, they must work together seamlessly to provide ADAS functionality
and protect road users. For example, an industrial report [46, 47] suggests
that to enable basic ADAS functions, such as rear-end collision, intersection,
and pedestrian warnings, the system must achieve 100 ms end-to-end latency
and 150 cm positioning accuracy, providing sufficient response time to drivers.
More advanced ADAS warnings, such as lane change assistance (requiring 100
ms end-to-end latency and 30 cm positioning accuracy) and vehicle platooning
(requiring 20 ms end-to-end latency and 30 cm positioning accuracy), have
even more stringent requirements to function effectively. In Figure 1.3, we can
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FIGURE 1.3
The collaboration between communication and sensing modules to realize the
above ADAS functionalities in 6G communication systems.

see how the collaboration between communication and sensing modules can
enable the ADAS functionalities for 6G communication systems. The sensing
module employs various sensors as sensing hardware to obtain environmental
information. This information is processed by different algorithms placed in
the artificial intelligence-operation system (AI-OS) layer, which provides com-
ments to sensing hardware and results to the ADAS module. Similarly, the
same workflow can also be observed in the communication module. Note that
communication hardware and sensing hardware can work together to process
information to enable raw data-level coordination/collaboration. After that,
the ADAS module can further utilize the processed information from both
modules through decision-level coordination/collaboration to predict risks for
drivers and trigger warning or assistance systems when necessary. Those dif-
ferent levels of coordination or collaboration can further improve the ADAS
system performance but will also require advanced algorithms to enable raw
data-level or decision-level fusion and joint decision-making. On the one hand,
communications can aid sensing by allowing vehicles to share sensing results
and safety-related data, creating a wider field of view and improving the
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positioning accuracy of targets by aggregating environmental information from
several sensors. On the other hand, sensing can aid communication by using
environmental information as input to improve communication operations.
For example, vehicle density can be considered when allocating resources to
roadside units [48]. In the aforementioned process, in literature [49–53], one
can notice that machine learning (ML)-based solutions play an important role
in such systems to further aid the signal processing in communication and
sensing systems (i.e., AI-OS layer in communication and sensing module).
Moreover, in the ADAS module, ML-based solutions are also the mainstream
methods for heterogeneous data fusion from both layers and enabling advanced
decision-making such as ADAS predictions and reactions. Thus, we will dis-
cuss the current status of wireless communications and automotive sensing
in Sections 1.2 and 1.3, respectively. Furthermore, we will discuss the moti-
vation and current status of the coordination/collaboration between current
sensing and communication modules, also known as integrated sensing and
communication (ISAC) systems in Section 1.4. Finally, Section 1.5 will briefly
introduce novel ML solutions to enhance the performance and efficiency of
such systems to conclude this chapter.

1.2 Overview of Wireless Communications

Figure 1.2 illustrates different wireless connections utilized in vehicular scenar-
ios to enable various functionalities. Vehicular-to-vehicular (V2V) connections
allow multiple vehicles to connect, enabling the sharing of sensing information
collected by each vehicle. Similarly, vehicular-to-pedestrian (V2P) connections
can be employed to broadcast vehicle movements in advance to surrounding
pedestrians, serving as a warning system. Lastly, vehicular-to-infrastructure
(V2I) connections can provide traffic light warnings or route recommenda-
tions to each vehicle, improving overall traffic efficiency. Collectively, these
connections are known as vehicular-to-everything (V2X) connections which
can further enhance ADAS capabilities as discussed earlier. Currently, two
primary communication standards are utilized to provide V2X connectivity to
road users in vehicular scenarios: cellular-V2X (C-V2X) and dedicated short-
range communications (DSRC) [54,55]. DSRC can serve as a short-range and
uncoordinated communication tool for V2V and V2I connections to establish
vehicular ad hoc networks (VANETs). In contrast, C-V2X can provide con-
nectivity with superior throughput and lower latency owing to the aid of the
surrounding infrastructure. Moreover, considering the fundamental differences
and inherent benefits of both standards, current literature is exploring the
possibility of developing a dual-interface-enabled V2X communication system
that leverages the advantages of both standards in appropriate scenarios [56].
Regardless of which standard is adopted, in the United States, the Federal
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Communications Commission (FCC) has allocated the frequency range 5850–
5925 MHz for ITS applications. This band is divided into 7 channels, with 10
MHz allocated to each channel (5855–5925 MHz), while the remaining 5 MHz
is reserved for future usage. Specifically, channels 172 (5855–5865 MHz) and
184 (5915–5925 MHz) are assigned for safety applications; channels 174 (5865–
5875 MHz), 176 (5875–5885 MHz), 180 (5895–5905 MHz), and 182 (5905–5915
MHz) are for non-safety applications; and channel 178 (5885–5895 MHz) is
designated for control purposes. Given the limited frequency resources men-
tioned above, providing wireless connectivity to numerous road users that
satisfies the stringent requirements of ITS applications can be really chal-
lenging. However, over the course of several decades, wireless communication
has developed a mature framework with dedicated operations that meet the
connectivity needs of road users. To introduce the framework that enables
real vehicular communications, this book first explains the wireless propaga-
tion nature of radiofrequency bands in Chapter 2. Then, Chapter 3 discusses
the fundamental radiofrequency waveform, which serves as the wireless com-
munication specification starting from the 4th-generation communications, to
provide readers with an understanding of how a real communication system
operates. In Chapter 4, the signal processing operations of single-user scenarios
are explored. Given the limited frequency resource, a spatial resource offered
by multiple antennas in the transmitters and receivers (i.e., multiple-input-
multiple-output (MIMO)) architecture is crucial for enabling high-throughput
transmissions in the considered vehicular scenarios. Consequently, this chap-
ter provides an introduction to typical operations in such systems. Moreover,
extending from single-user scenarios, interference management and multiple
access are both important considerations when serving several users simul-
taneously. Chapter 5 concludes with a discussion of how to divide available
resources to create diversity in frequency, spatial, and code domains to resolve
several wireless connections for multiple-user scenarios.

1.3 Overview of Automotive Sensing

As also illustrated in Figure 1.2, vehicles require sensing capabilities to per-
ceive environmental information for ADAS functionalities. To meet this re-
quirement, modern vehicles are often equipped with three types of sensors,
namely radar [57], Lidar [58], and vision sensors [59, 60]. While these three
sensors can provide similar functionalities to ADAS, we argue that radar sen-
sors are indispensable for automotive sensing due to their relatively low-cost
and robustness. Specifically, radar sensors are essential because they can pro-
vide range and radial velocity information of surrounding objects to ADAS
systems, while Lidar and vision systems require special designs to offer velocity
information. Moreover, radar is the only sensor in this list that can function
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normally without any special designs in challenging light conditions, such as
in bad weather, dark or bright. As ADAS or even fully automated driving sys-
tems should remain functional in any scenario, solely Lidar or vision sensors
cannot be employed alone for this purpose, and radar sensing is still an integral
part when it comes to automotive sensing. Therefore, we will primarily focus
on the current situation of radar systems while discussing automotive sensing
topics in this book. In the United States, the FCC has approved the use of
the 76–77 GHz and 77–81 GHz mmWave spectrum for automotive long-range
radar and short-range radar usages, respectively. With this ample frequency
resource, we will introduce how modern radar systems utilize those frequency
bands to obtain environmental information by employing different waveforms
in Chapter 6. Similarly, multiple antennas can benefit radar systems by pro-
viding improved estimation results compared to single antenna cases or even
offering further environmental information such as direction of arrival. We will
explain these mechanisms in detail in Chapter 7. Finally, we aim to devote
a chapter to discussing interference mitigation schemes when multiple radars
employ the same resources in Chapter 8 to conclude the discussion of modern
radar systems.

1.4 Overview of Integrated Sensing and
Communications

In Figure 1.2, one can also see that modern vehicular scenarios involve mul-
tiple wireless connections and radar sensing at the same time to provide the
desired functionalities. While both applications require frequency resources,
the current approach of assigning dedicated bands to each of them may not be
sufficient as the number of connected vehicles increases and the demand for
ADAS and fully autonomous driving applications grows. To address this chal-
lenge, researchers are exploring the potential of ISAC systems [61–63], which
allow the ample frequency resources from automotive sensing systems to be
shared with communication systems. Moreover, different levels of integration
can also be realized in such a framework for joint benefits, such as reduced
mutual interference and consequently improved performance. In light of this
direction, ISAC systems can be categorized into co-existence and coordinated
architectures depending on the level of interaction between the communica-
tion and sensing systems. Co-existence ISAC systems provide a platform for
communication and sensing systems with different hardware components to
be co-designed and realize collision avoidance. On the other hand, coordinated
ISAC systems are capable of simultaneously providing benefits to communica-
tion and sensing purposes, allowing for more complex co-designs. In Chapter
9, we will delve into the architecture of ISAC systems, exploring both co-
existence and coordinated models. We will also discuss the design concepts of
the ISAC transceiver in Chapter 10.
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1.5 Overview of Learning-Based Enhancements

Finally, over the past decade, we also noticed that the development of learning-
based enhancements has provided new momentum to human technologies,
offering promising alternatives to traditional optimization-based algorithms.
ML technologies have the potential to provide more efficient solutions to bet-
ter solve current bottlenecks and enable novel applications that were previ-
ously thought to be unsolvable by optimization-based algorithms. Computer
vision [64,65] and natural language processing [66,67] are two ML-dominated
research areas demonstrating ML algorithms’ value. ML algorithms provide
new state-of-the-art solutions to classic computer vision applications [68] and
enable new applications in computer vision society, such as highly convincing
video editing and video generating in medical, business, and manufacturing
domains [69]. Reinforcement learning solutions also accelerate the develop-
ment of natural language processing research [70, 71], providing killer appli-
cations, such as ChatGPT, to enable highly human-like chatboxes and text
generations. Researchers are also investigating the possibilities of utilizing
ML solutions to aid communication/sensing system designs, and have already
made exciting progress [72–75]. In 3rd Generation Partnership Project (3GPP)
Release 18, three practical usages of ML-aided communication and sensing
system designs are listed for researchers to further study, including channel
state information feedback, beam management, and fine-grained target posi-
tioning [76]. Moreover, we can also see that increasingly more communication
and sensing operations have involved ML algorithms in the design loop for en-
hanced performance. Generally speaking, ML algorithms are particularly valu-
able in cases with model deficits and algorithm deficits [77], where traditional
optimization-based algorithms heavily rely on precise mathematical models to
be developed. In cases with imprecise mathematical models or even without
mathematical models (i.e., model deficits), the development of optimization-
based algorithms is extremely challenging and the achieved performance will
be limited significantly. As an alternative, given ample training samples as
a precondition, ML algorithms can learn the underlying system model auto-
matically by observing the input/output relationship of training samples to
tackle the cases without mathematical models. In addition, even with precise
mathematical models for the considered problems, computationally demand-
ing optimization-based algorithms are still widely employed in the designs of
communication operations (i.e., algorithm deficits). With appropriate train-
ing, ML algorithms provide a good approximation in building a function to
directly output the desired output based on a given input. Thus, compli-
cated calculations can be ignored and similar performance can be obtained
to facilitate real-time designs of communication system operations. To intro-
duce readers to recent developments in ML algorithms, Chapter 11 provides
an overview of mainstream ML solutions and typical usages. The book also
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includes chapters that discuss ML-based signal processing and interference
mitigation topics in communication systems (Chapters 12 and 13) and radar
systems (Chapters 14 and 15) by further considering recent learning-based
enhancements and their applications in both communication and automotive
sensing systems. Finally, Chapter 16 discusses the intersection between the
main topic of this book, ML-enabled design and ISAC systems to conclude
this book. This book aims to encourage more researchers to contribute their
efforts in the direction of ML-enabled design toward efficient wireless commu-
nications, advanced sensing, and ISAC operations in 6G systems.
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Wireless Communication
Basics
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2

Wireless Channels and Signal
Models

2.1 Wireless Propagation Overview

When we discuss wireless transmissions, we are referring to the utilization
of electromagnetic (EM) waves to deliver signals, or information, from the
transmitter to the receiver. Unlike wired transmissions, where the signal fol-
lows a stable and fixed path, the behavior of signals in wireless communication
scenarios is more complex and variable. For instance, the signal strength sig-
nificantly varies based on the distance traveled by the signal. Additionally,
the interaction between the input signals from the transmitter and the sur-
rounding environment causes reflection, diffraction, and scattering, which also
affect the behavior of the received signals at the receiver’s end. These interac-
tions are influenced by the carrier wavelength of the transmitted signals and
the size and material composition of encountered obstacles, as shown in Fig-
ure 2.1. Considering these factors, signals transmitted through different paths
can result in constructive or destructive superpositions, ultimately forming
the final received signals. Furthermore, in real-world wireless transmissions,
environmental changes such as the movement of people and vehicles lead to
variations in transmission behaviors, including the presence of obstacles and
changes in the distance between the transmitter and receiver. Consequently,
the wireless channel becomes a highly time-variant system. Mathematically
speaking, a wireless communication system can be characterized as a linear
system. In this framework, the output signals at the receiver side can be de-
scribed as the convolution of the input signals from the transmitter side with
the wireless channel response in the time domain. In order to successfully
decode the desired information at the receiver side, it is imperative to have
a comprehensive understanding of the underlying wireless channel response
and this understanding actually plays a pivotal role in the design of modern
transceivers.

To do so, we will approach the problem from a statistical perspective in this
chapter, bridging the gap between real-world physics and the corresponding
channel behavior in modern transceiver designs. This chapter starts by in-
troducing various types of channel behaviors, such as large-scale/small-scale
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FIGURE 2.1
Illustration of a wireless communication transmission environment.

fading, frequency-selective/non-selective channel models, and fast/slow fading
behaviors, beginning with single antenna systems. Furthermore, we extend the
scope to multiple-input-multiple-output (MIMO) systems by deploying mul-
tiple antennas on both the transmitter and receiver sides. We introduce the
MIMO channel model, which takes into account the extended spatial degree of
freedom. Finally, this chapter provides an explanation of the typical transmis-
sion environment settings defined by international standard groups, using the
3GPP proposed spatial channel model (SCM) and SCM-extension (SCME) as
examples.

2.2 Large-Scale Fading

This section focuses on the phenomenon of large-scale fading in wireless trans-
mission. Specifically, when EM waves are transmitted, there are two primary
factors that contribute to significant power attenuation. First, as EM waves
traverse a medium that is not transparent to them, power losses occur and
these losses are directly related to the distance traveled by the EM waves,
known as path loss. Second, when obstacles are present between the transmit-
ter and receiver, the EM waves experience substantial power losses due to the
shadowing effect caused by passing through these obstacles. In the following
explanations, we will delve into the following two types of large-scale fading
phenomena.
Path loss: In terms of path loss attenuation, let’s begin by considering the
simplest that is free-space transmission. In this scenario, the relationship be-
tween the transmit power and the receive power can be described using the
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TABLE 2.1
The path loss exponent of common environments.

free-space propagation model:

PR(d) =
PTGTGRλ

2

(4π)2d2L
= PR(

d0
d
)2, d > d0 (2.1)

where PR and PT represent received and transmitted power and GR and GT

stand for receive and transmit antenna gain, respectively. λ is the carrier
frequency, d is the distance between transmit antenna and receive antenna, L
is the system loss factor, and d0 is a reference distance.1 Eq. (2.1) describes
the relationship between received and transmitted power and the equation of
path loss can be inferred consequently. As aforementioned, path loss refers to
the power losses which EM waves consume to travel in the medium. Using dB
unit, the path loss in free-space scenario can be expressed as:

PL(d)[dB] = 10log10
PT

PR
= −10log10

[
GTGRλ

2

(4π)2d2

]
. (2.2)

After introducing the free-space path loss model, it is important to note that in
realistic environments, which are considerably more complex compared to the
free-space case, we often formulate the path loss model as a random variable.
Consequently, the average path loss can be expressed as follows:

PL(d)[dB] = PL(d0) + 10nlog10(
d

d0
). (2.3)

In Eq. (2.3), it is evident that the path loss is proportional to the distance
raised to the power of n, denoted as PL(d) ∝ ( d

d0
)n. Here, n is a predetermined

parameter known as the path loss exponent which depends on the specific
environment being considered. The values of n for common environments are
listed in Table 2.1 as a reference.

1Note that if without the constraint d > d0, the received power in a place, where receiver
is very close to the transmitter, will be infinite. However, in real scenarios, following the law
of conservation of energy, the received power should never exceed the transmitted power.
Hence, the constraint should be added to ensure the law of conservation of energy.
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Furthermore, let’s explore two more complex path loss models for wireless
communications that take into account additional physical parameters. The
first model is Hata model [78], which is expressed as follows:

PL(d)[dB] = 69.55 + 26.16log10(fc)− 13.82log10hte − a(hre)
+ (44.9− 6.55log10hte)log10(d), (2.4)

where fc is the carrier frequency, hte and hre are the height of transmit antenna
and receive antenna in meters, respectively (Note that 30 < hte < 200 and
1 < hre < 10 should be held to match the setting of measurement data), and
a(hre) is a predefined parameter based on the height of the receive antenna.
Another commonly used path loss model is the Walfisch–Bertoni model [79],
which is expressed as follows:

PL[dB] = L0 + Lrts + Lms, (2.5)

where L0, Lrts, and Lms represent free-space path loss, the excess path loss
caused by the curvature of the Earth, and the excess path loss caused by
building geometry. Interested readers can find detailed parameter settings of
these two models in their original papers [78,79].
Shadowing effect: Besides the path loss caused by the travel distance of EM
waves, obstacles along the path of EM waves can lead to significant attenua-
tion and affect the strength of the EM waves. This phenomenon is commonly
referred to as the shadowing effect. In the large-scale fading model, we often
represent the shadowing fading effect as a random variable following a log-
normal distribution. It is worth noting that when expressing the path loss
formula in dB units, the shadowing effect is transformed into a normal dis-
tribution, as the logarithmic operation is canceled out. Therefore, the total
large-scale fading model, which considers both the path loss and shadowing
effects, can be expressed as follows:

PL[dB] = PL(d) +XSF. (2.6)

In the expression, the variable XSF follows a normal distribution N (0, (σSF)
2),

representing the shadowing effect. A commonly used range for the standard
deviation σSF is between 4 and 10 which helps to incorporate an appropriate
and realistic level of shadowing effect. In Figure 2.2, the solid line represents
the path loss effect, which consistently decreases the received signal power with
distance. On the other hand, the dotted line represents the total large-scale
effect, taking into account the fluctuation caused by the random presence of
obstacles between the transmitter and receiver. By incorporating the shadow-
ing effect, the total large-scale fading exhibits additional variations around the
path loss trend. Finally, it is worth mentioning that there exist advanced large-
scale propagation models that incorporate additional terms to capture specific
behaviors in particular frequency bands and environments. These models build
upon the fundamental principles and real measurement data, expanding on
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FIGURE 2.2
Illustration of the impact of environmental fading and distance on signal
strength.

the concepts introduced in the previously discussed models. However, it is im-
portant to note that despite the existence of these advanced models, the three
models discussed earlier (free-space model, Hata model, and Walfisch–Bertoni
model) remain the most commonly used ones. These advanced models are
developed based on similar logical foundations and utilize real measurement
data to refine and enhance the accuracy of path loss predictions.

2.3 Small-Scale Fading

Besides the large-scale fading caused by distance and encountered obstacles
during the travel of EM waves, the multi-path between transmitter and re-
ceiver and the relative movement of transmitter and receiver also cause dif-
ferent signal behaviors. We will introduce how the current wireless communi-
cation system considers those effects in this section.
Multi-path effect and delay spread: Imagine speaking loudly in a spa-
cious hall, where the sound waves you produce result in an echo that persists
for a period of time. This phenomenon can be explained by the behavior of
acoustic waves which traverse various angles, undergo different reflections,
and ultimately reach the listener’s location with varying arrival times and
strengths. Similar effects can be observed in the transmission of EM waves.
A visual representation of a sample channel effect is presented in Figure 2.3.
In our analysis, we will initially focus on a specific moment, denoted as t0,
assuming that the magnitude of the initial impulse in this instance is given by
h(t0, τ1) = 0.2. This implies that after a time delay of τ1 seconds, the first echo



20 Wireless Channels and Signal Models

FIGURE 2.3
Illustration of a time-varying channel impulse response.

will reach the listener’s position with an intensity of 0.2, corresponding to an
attenuation of 80% during transmission. Subsequently, additional echoes will
arrive at the listener’s location with varying delays and magnitudes. Further-
more, in more complex scenarios where the environment undergoes continuous
changes, such as people entering and leaving the hall, the resulting channel
becomes time-variant, as indicated by the t axis in Figure 2.3. Therefore, a
comprehensive channel model should incorporate both the multi-path effect
and the time-variant nature of the channel. To do so, the impulse response of
a wireless channel can be expressed as:

h(t, τ) =
N∑
i=1

αi(t)exp[−j(2πfcτi(t) + ϕi(t))]δ(τ − τi(t)), (2.7)

where N is the number of paths. αi(t), τi(t), and ϕi(t) represent the magni-
tude, delay time, and phase of the ith path at timeslot t, respectively. Based
on Eq. (2.7), the relationship between input signal u(t) and output signal x(t)
can be obtained as:

x(t) =

∫
h(t, τ)u(t− τ)dτ =

N∑
i=1

αi(t)exp[−j(2πfcτi(t) + ϕi(t))]u(t− τi(t)).

(2.8)
In the case where the considered wireless channel is time-invariant, Eq. (2.7)
can be simplified as:2

h(τ) =
N∑
i=1

αiexp[−jθi]δ(τ − τi), (2.9)

where θi is the phase of the ith path in such case.

2Note that the resulting impulse response is no longer a function of t.
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FIGURE 2.4
Illustration of a power delay profile.

In wireless channels characterized by multi-path effects, the power delay
profile plays a crucial role in determining the relationship between power and
the relative delay of each path. This profile is often visualized as shown in Fig-
ure 2.4. In order to simplify our analysis, we initially assume that the wireless
channels are time-invariant. For a specific carrier frequency, different power
delay profiles result in varying degrees of constructive or destructive interfer-
ence. In essence, the frequency response of a particular frequency is influenced
by the power delay profiles of the underlying channel. Since it is challenging
to express the power delay profiles of all paths using simple mathematical for-
mulations, similar to the shadowing effect, statistical methods are commonly
employed to describe these profiles. Specifically, the delay and delay spread
can be utilized to represent the relationship between power and relative delay
within a given channel. Given a power delay profile Sτ (τ), we can express the
maximum excess delay as follows:

Tm = τmax, (2.10)

and average excess delay as:

τ =

∫ τmax

0
τSτ (τ)dτ∫ τmax

0
Sτ (τ)dτ

(2.11)

In Eq. (2.10), the maximum excess delay corresponds to the delay of the
longest path within the channel, while the average excess delay, as given by
Eq. (2.11), represents the average delay across all paths. In addition to the
excess delay measures, the delay spread serves as a descriptor for the distri-
bution of delays among the paths within the considered channel. A smaller
delay spread indicates that the differences in delay between the paths are also
smaller. Consequently, the arrival times of signals from all paths are relatively
similar. Conversely, a larger delay spread indicates significant differences in the
arrival times of signals from the various paths. The delay spread is commonly
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quantified using the root mean square (RMS) approach, defined as follows:

τRMS =

√
τ2 − (τ)2; τ2 =

∫ τmax

0
τSτ (τ)

2dτ∫ τmax

0
Sτ (τ)dτ

. (2.12)

The coherence bandwidth of a channel can be defined based on the con-
cept of excess delay and delay spread. The coherence bandwidth represents the
maximum bandwidth within which a transmitted signal experiences similar
channel characteristics. To illustrate this concept, let’s consider a hypothetical
scenario where the coherence bandwidth of a channel at a carrier frequency
of 1.9 GHz is determined to be 500 kHz. In this case, any signal with a total
bandwidth smaller than 500 kHz, transmitted within the 1.9 GHz frequency
band, would be expected to undergo the same channel behavior, as depicted
in Figure 2.5(a). Conversely, if a signal with a total bandwidth larger than
500 kHz is transmitted through the 1.9 GHz band, different parts of the sig-
nal will encounter distinct channel behaviors, as illustrated in Figure 2.5(b).
In general, the coherence bandwidth is inversely proportional to the delay of
a channel. A larger delay leads to a greater phase difference across different
frequencies, resulting in a reduced bandwidth with similar channel behavior.
Based on this principle, three commonly used definitions for coherence band-
width are as follows:

Bc ≈
1

τmax
, (2.13)

Bc ≈
1

50τRMS
, (2.14)

and

Bc ≈
1

5τRMS
, (2.15)

Specifically, Eq. (2.13) defines it as the reciprocal of the maximum excess delay.
Eq. (2.14) and Eq. (2.15) define it as the bandwidth where the correlation
between different frequency components exceeds 0.9 and 0.5, respectively.3

Time-varying channels and Doppler spread: Wireless channels typically
exhibit variability due to changes in the relative positions of the transmitter,
receiver, and the surrounding environment, including obstacles. These varia-
tions are a primary cause of time-varying channels. However, considering the
movements of all three entities throughout the entire transmission duration
is exceedingly complex. In practical scenarios, the movements of the trans-
mitter and receiver have a more significant impact than the environmental
changes. Therefore, most time-varying channel models assume a fixed envi-
ronment and focus solely on the channel effects caused by the movements of
the transmitter and receiver, specifically the channel effects resulting from the
Doppler effect. The Doppler effect is utilized to describe the changes in signal
carrier frequency induced by the movements of the transmitter and receiver,

3Please refer to ref. [80] for more information.
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FIGURE 2.5
(a) Illustration of the case when the signal bandwidth is smaller than coherent
bandwidth. (b) Illustration of the case when the signal bandwidth is larger
than coherent bandwidth.

FIGURE 2.6
Illustration of the Doppler shift.

as depicted in Figure 2.6. In this figure, R0 represents the distance between
the transmitter and receiver, v denotes the velocity of the transmitter, and
θ represents the angle between the wireless transmission and the direction of
the transmitter’s movement. It is important to note that we are considering a
single-path example in this scenario. Within this model, the change in signal
carrier frequency fD is determined by the transmitter velocity v, the angle
θ, and the wavelength λ of the signal carrier, as expressed in the following
equation:

fD =
v

λ
cos(θ). (2.16)

Similar to the concept of delay spread, the Doppler spread is utilized to
characterize the channel effects caused by the Doppler effect. Specifically, the
Doppler spread represents the frequency range or bandwidth that is influenced
by the Doppler effect. For instance, if a single-tone signal with a bandwidth of
zero passes through a channel with a Doppler spread of 200 kHz, the resulting
received signal will have a bandwidth of 200 kHz. The Doppler spread is
commonly quantified using the RMS approach, which provides a measure of
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FIGURE 2.7
Illustration of a Doppler power spectrum.

the spread. It is defined as follows:

fRMS =

√∫
(f − f)2SD(f)df∫

SD(f)df
; f =

∫
fSD(f)df∫
SD(f)df

, (2.17)

where SD is the Doppler power spectrum of the channel, as shown in Figure
2.7.

The relationship between Doppler spread and coherence time is similar to
the relationship between delay spread and coherence bandwidth. In a time-
varying channel, coherence time refers to the duration during which the chan-
nel remains statistically unchanged. Consequently, the coherence time is in-
versely proportional to the Doppler shift of the channel. A larger Doppler
shift, indicating a higher velocity of the transmitter, leads to rapid changes
in channel characteristics. As a result, the duration during which the channel
remains unchanged becomes shorter. Similar to coherence bandwidth, there
are three commonly used definitions for coherence time. These definitions are
as follows:

Tc ≈
1

fmax
, (2.18)

Tc ≈
9

16πfmax
, (2.19)

and

Tc ≈

√
9

16πf2max

=
0.423

fmax
. (2.20)

Specifically, Eq. (2.18) sets it as the reciprocal of the maximum Doppler shift
fmax. Eq. (2.19) defines it as the duration with correlation greater than 0.5.
Eq. (2.20) utilizes the geometric mean to calculate the coherence time.4 One
commonly used channel model for simulating time-varying multi-path wireless

4Please refer to ref. [80] for more information.
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FIGURE 2.8
Illustration of the Jakes model environment.

FIGURE 2.9
Illustration of a Doppler power spectrum under Jakes model.

connections is the Jakes model. The Jakes model is often employed to capture
the effects of transmitter or receiver movements, as depicted in Figure 2.8.
This model focuses on small-scale fading and does not consider large-scale
path loss or shadowing effects. In the Jakes model, it is assumed that the re-
ceiver is moving with a velocity of v, and a signal with a carrier frequency of
f is arriving from all angles uniformly. Consequently, the signal strength from
each path is equal and follows an independent and identically distributed
Rayleigh distribution. As illustrated in Figure 2.9, when a large number of
signals arrive, the power spectrum exhibits a relationship with frequency. No-
tably, the majority of the signal power is concentrated at the largest frequency
offset, denoted as fmax.
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FIGURE 2.10
(a) Illustration of the flat fading. (b) Illustration of the frequency-selective
fading.

Summary of small-scale fading: Wireless channels can be classified into
two categories based on frequency-varying effects: flat fading and frequency-
selective fading. In flat fading, the signal experiences similar channel behavior
within its bandwidth, even though different parts of the signal may have differ-
ent carrier frequencies. This occurs when the signal bandwidth is smaller than
the coherence bandwidth of the wireless channel, as shown in Figure 2.10(a).
In frequency-selective fading, different parts of the signal encounter varying
channel behaviors due to the signal bandwidth exceeding the coherence band-
width, as shown in Figure 2.10(b). From a time-varying perspective, wireless
channels can be categorized as slow fading and fast fading. Slow fading refers
to the situation where the signal experiences similar channel behavior, even if
different parts of the signal are transmitted in different time slots. This occurs
when the transmission duration of a single signal is smaller than the coherence
time of the wireless channel, as shown in Figure 2.11(a). On the other hand,
fast fading occurs when the transmission duration of a single signal is longer
than the coherence time, as shown in Figure 2.11(b), resulting in different
channel behaviors for signals transmitted in different time slots.

The choice of which type of fading to consider in a specific scenario de-
pends not only on the channel behaviors discussed above but also on the
characteristics of the transmitted signal. For example, a channel with a co-
herence bandwidth of 50 kHz would be considered a flat fading channel for
LTE-A subcarriers (with a bandwidth of 15 kHz per subcarrier). However,
the same channel would be considered frequency-selective for signals utilizing
Universal Mobile Telecommunications Systems (UMTS). Figure 2.12 provides
a summary of the four types of small-scale fading discussed in this section.

2.4 Wireless Signal Models with Multiple Antennas

In the previous section, we examined the channel modeling of wireless con-
nections between the transmitter and the receiver. The focus was primar-
ily on elucidating the influence of various environmental parameters on the
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FIGURE 2.11
(a) Illustration of the slow fading in frequency domain. (b) Illustration of the
fast fading in frequency domain.

FIGURE 2.12
Illustration of the four types of different small-scale fading in this section.

resultant wireless channel. Nevertheless, it is crucial to acknowledge that the
wireless connections are also significantly affected by the implementation of
diverse antenna configurations at the transmitter and receiver, which was not
addressed in the previous section. In reality, contemporary wireless commu-
nication systems, including commercial mobile communication systems, have
already embraced the utilization of multi-antenna structures to fully exploit
the advantages offered by spatial diversity. Consequently, recent advancements
in channel modeling have incorporated these multi-antenna structures at both
the transmitter and receiver ends, resulting in the development of more intri-
cate, multidimensional, and time-varying channel models. The purpose of this
section is to present some frequently employed signal models for multi-antenna
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FIGURE 2.13
Illustration of the scenario with a single information source and multiple an-
tennas in the receiver.

systems, thereby enabling readers to gain a comprehensive understanding of
current wireless systems.
Antenna array and beamforming technology: We initially consider a
simplified scenario in which a point transmitting source establishes wireless
connections with a receiver equipped with multiple antennas. As depicted in
Figure 2.13, the receiver employs an antenna array comprising NR elements.
Here, x⃗i denotes the position vector of the ith antenna, while r⃗ represents
a unit vector pointing from a reference point toward the point source. It is
worth noting that the arrangement of elements within the antenna array is not
restricted; the sole requirement is that the distance between the point source
and the antenna array should be significantly large, adhering to the far-field
assumption. Under this assumption, the incident wave resulting from the point
source can be treated as a plane wave, thereby simplifying the relationship
between the received signals from each antenna. Another assumption is that
a narrow-band signal is transmitted from the point source, ensuring that the
received signals from each antenna possess the same baseband representation,
further facilitating the simplification of the received signals of the antenna
array. Based on the aforementioned model, the equivalent baseband signals
received from each element in the antenna array can be represented as a
vector, as indicated below:

x(t) =

 x1(t)
...

xNR
(t)

 =

 ej
2π
λ x⃗1· r⃗

...

ej
2π
λ x⃗NR

· r⃗

u(t) +
 n1(t)

...
nNR

(t)

 = a(r⃗)u(t) + n(t),

(2.21)
where λ is the carrier wavelength, u(t) is the baseband signal, and a(r⃗) is the
array steering vector which is also known as spatial signature vector (SSV).
The array steering vector characterizes the spatial response of the antenna
array. Furthermore, by examining the definition of the array steering vector,
we can discern how the far-field assumption and narrow-band assumption
contribute to obtaining an elegant result in Eq. (2.21). First, the plane wave
assumption, derived from the far-field assumption, enables us to represent the
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FIGURE 2.14
Illustration of the uniform linear array (ULA).

FIGURE 2.15
Illustration of the uniform circular array (UCA).

path of the wave from the point source to the ith element of the antenna
array as x⃗i · r⃗. Second, the narrow-band assumption permits the extraction of
the common baseband signal from the array steering vector, thereby enabling
each element within the array steering vector to represent the resulting phase
response of each antenna, i.e., the spatial response.

Two commonly employed permutation schemes for forming antenna arrays
are the uniform linear array (ULA) and the uniform circular array (UCA).
When considering the number of antennas, NR, the ULA structure arranges
all antennas in a linear configuration with equal spacing, as illustrated in
Figure 2.14. Conversely, the UCA structure distributes all antennas evenly
along a circular ring, as depicted in Figure 2.15. The array steering vector for
the ULA structure can be mathematically represented as follows:

a(θ) =


1

e−j 2π
λ dsinθ

...

e−j 2π
λ (NR−1)dsinθ

 , (2.22)

where θ is the angle between r⃗ and the normal line of this array and d is
the antenna spacing. The array steering vector of the UCA structure can be
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FIGURE 2.16
Illustration of a beamformer and the corresponding spatial response.

expressed as:

a(θ) =


ej

2π
λ Rsinϕcosθ

e
j 2π

λ Rsinϕcos(θ− 2π
NR

)

...

e
j 2π

λ Rsinϕcos(θ− 2(NR−1)π

NR
)

 , (2.23)

where R is the radius of the circular ring, θ is the azimuth angle measured
from the X-axis counter-clockwise, and ϕ is the elevation angle measured from
the Z-axis.

One of the most commonly employed applications of antenna arrays is
beamforming which can be understood as a spatial filtering technique. By ap-
plying specific weights to the received signal at each antenna and summing
the processed signals, a spatial filtering structure known as a beamformer is
obtained, as depicted in Figure 2.16. It is evident that different weights yield
different spatial responses, and the goal of beamforming design is to determine
the optimal weights for a given scenario. It is worth noting that the principle
of beamforming bears resemblance to that of finite impulse response (FIR)
filters in digital signal processing. However, instead of frequency responses,
beamforming generates spatial responses by associating spatial angles with
frequencies. The beamforming principle can be employed in both the trans-
mitter and receiver, referred to as transmit beamforming and receive beam-
forming, respectively. Mathematically, receive beamforming can be formulated
as follows:

y(t) =

NR∑
i=1

w∗
i xi(t) = wHx(t), (2.24)

where w = [w1, w2, ..., wNR
]T is the weighting vector. Imagine that a convex

lens can be utilized to focus a straight beam of light. Similarly, the beam-
former, through appropriate weights, can concentrate on receiving signals from
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FIGURE 2.17
Illustration of a SU-SIMO scenario.

a specific direction, thereby enhancing the received signal power and improv-
ing transmission quality. Analogously, in the case of transmit beamforming,
assuming an antenna array with NT antennas is employed, it can be expressed
as follows:

x(t) = wHu(t);

 x1(t)
...

xNT
(t)

 =

 w∗
1
...

w∗
NT

u(t). (2.25)

The concept of transmit beamforming can be likened to a searchlight, where
signals from different antennas are concentrated toward a specific direction
to enhance signal power. Both transmit and receive beamforming offer two
key advantages by boosting power in a particular direction. First, the trans-
mission quality can be improved, leading to superior quality of service (QoS).
Second, it enables the mitigation of mutual interference between the desired
signal and other signals. These two benefits serve as strong motivations for
system designers to widely adopt beamforming technology in modern wireless
communications.
SIMO, MISO, and MIMO signal models: In this section, we will intro-
duce several commonly used multi-antenna signal models, building upon the
aforementioned basic signal model. We begin by considering the single-user
single-input-multi-output (SU-SIMO) model, which pertains to the uplink sce-
nario where a user is connecting to a base station, as illustrated in Figure 2.17.
The receive signal in this model can be expressed as follows:

x(t) =

J∑
j=1

αja(θj)u(t− τj) + n(t), (2.26)

where J is the number of paths. αj , θj , and τj represent the fading gain,
angle of arrival (AoA), and delay of the jth path, respectively. a(θj) is the
array steering vector and u(t) is the transmitted baseband signal. Additionally,
the single-user multiple-input-single-output (SU-MISO) model addresses the
downlink scenario, wherein the base station transmits signals to a user, as
depicted in Figure 2.18. The receive signal in this model can be expressed as
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FIGURE 2.18
Illustration of a SU-MISO scenario.

FIGURE 2.19
Illustration of an MU-SIMO scenario.

follows:

x(t) =
J∑

j=1

αjw
Ha(θj)u(t− τj) + n(t), (2.27)

where w is the transmit beamforming weight and θj is the angle of departure
(AoD). Furthermore, the multi-user single-input-multiple-output (MU-SIMO)
model encompasses a more intricate scenario. It involves multiple users, each
equipped with a single antenna, transmitting simultaneously to a base station
equipped with multiple antennas during the uplink phase, as illustrated in
Figure 2.19. The receive signal can be expressed as:

x(t) =

Q∑
q=1

Jq∑
j=1

αjqa(θjq)uq(t− τjq) + n(t), (2.28)

where Q is the number of transmitters and uq(t) is the transmitted sig-
nal from qth transmitter. Finally, the multi-user multiple-input-single-output
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FIGURE 2.20
Illustration of an MU-MISO scenario.

(MU-MISO) model describes the converse scenario to the MU-SIMO model.
In this case, a base station equipped with multiple antennas serves several
users, each with a single antenna, during the downlink phase, as depicted in
Figure 2.20. The receive signal at the dth user can be expressed as:

xd(t) =

Q∑
q=1

Jd∑
j=1

αjdw
H
q a(θjq)uq(t− τjd) + nd(t), (2.29)

where wq is the beamforming weight that the base station utilized to con-
duct transmission to the qth receiver. In this scenario, designing beamforming
weights is a better strategy to let each user receive the desired signal and
minimize mutual interference between users simultaneously.

In contrast to the previous scenarios, when multiple users are replaced by
a single device with multiple antennas, it constitutes a MIMO system. The
MIMO system describes a scenario where a transmitter with NT antennas
communicates with a receiver equipped with NR antennas. To streamline the
analysis, we assume that the transmitter and receiver employ a single device
to accomplish wireless transmission, known as point-to-point transmission, as
illustrated in Figure 2.21. The receive signal can be expressed as:

y(t) =

∫
H(t, τ)x(t− τ)dτ + n(t), (2.30)

where H(t, τ) = [hij(t, τ)] ∈ CNR×NT is a MIMO channel matrix and the ith
element of the receive signal vector can be expressed as:

yi(t) =

NT∑
j=1

∫
hij(t, τ)xj(t− τ)dτ + ni(t). (2.31)
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FIGURE 2.21
Illustration of the MIMO signal model.

In Eq. (2.31), hij represents the element at the ith row and jth column of
the matrix H(t, τ). xj denotes the jth element of the vector x, and ni repre-
sents the ith element of the vector n. In the previously mentioned MU-SIMO
signal model, a group of users with single antennas can also be considered as
a transmitter with multiple antennas. Consequently, this can be expressed in
the form of an equivalent MIMO signal model as follows:

x(t) =

Q∑
q=1

Jq∑
j=1

αjqa(θjq)uq(t− τjq) + n(t)

=

Q∑
q=1

Jq∑
j=1

αjqa(θjq)δ(t− τjq) ∗ uq(t) + n(t)

= [h1(t) · · ·hQ(t)] ∗

 u1(t)
...

uQ(t)

+ n(t) = H(t) ∗ u(t) + n(t),

(2.32)

where each row of channel matrix H(t) corresponds to the equivalent channel
vector of each transmitted signal, expressed as:

hq(t) =

Jq∑
j=1

αjqa(θjq)δ(t− τjq). (2.33)

When applying the assumptions of slow fading and flat fading, the channel
matrix H(t) is no longer a function of t and τ , but instead becomes a constant
matrix denoted as H(t) = [hij ]. By making this simplification, as depicted in
Figure 2.22, the MIMO signal model can be further simplified as follows:

y(t) = Hx(t) + n(t), (2.34)

where the ith element of receive signal yi(t) can be expressed as:

yi(t) =

NT∑
j=1

hijxj(t) + ni(t). (2.35)
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FIGURE 2.22
Illustration of the MIMO signal model under slow fading and flat fading as-
sumptions.

FIGURE 2.23
Evolution from single-antenna systems to multi-antenna systems.

This simplified model can be applied to consider several widely used wireless
communication models, including multiple-input-multiple-output orthogonal
frequency division multiplexing (MIMO-OFDM). Please note that the MIMO-
OFDM system will be introduced in Chapter 4. To summarize this section,
Figure 2.23 illustrates the evolution from single-antenna systems to multi-
antenna systems.
Angle spread: In this section, we apply the concept of multi-antennas to
the previously introduced multi-path channel and discuss the resulting effects.
Figure 2.24 depicts a channel model that considers both multi-path and multi-
antenna effects simultaneously. On the receiver side, an antenna array with
multiple antennas is utilized to receive signals from different directions. Each
path in the channel has a distinct incident angle, and the angle spread is
used to describe the range of incident angles. The concept of angle spread
is analogous to delay spread and Doppler spread, which describe the spread
of delays and frequencies, respectively, in a multi-path channel. For instance,
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FIGURE 2.24
Illustration of the channel model considering multi-path effect and multiple
antennas effect.

FIGURE 2.25
Illustration of a signal spatial angle spectrum.

consider a channel with three paths. The angles at which these paths leave
the transmitter antenna are −10◦, 0◦, and 30◦, respectively, while the angles
at which they enter the receiver antenna are 3◦, 4◦, and 6◦, respectively.
Consequently, the angle spread observed by the transmitter antenna and the
receiver antenna would be 3◦ and 40◦, respectively. In practical scenarios, a
realistic signal will exhibit multiple paths during transmission. Therefore, we
employ the signal spatial angle spectrum Sθ(θ) to analyze the angle spread of
signals, as illustrated in Figure 2.25. To quantify the angle spread, the RMS
is a commonly used measure, defined as follows:

θRMS =

√√√√∫ π

−π
(θ − θ)2Sθ(θ)dθ∫ π

−π
Sθ(θ)dθ

; θ =

∫ π

−π
θSθ(θ)dθ∫ π

−π
Sθ(θ)dθ

. (2.36)

Following a similar concept to the coherence time and coherence band-
width, we can define the coherence distance DC based on the angle spread. In
particular, the coherence distance DC is expected to be inversely proportional
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FIGURE 2.26
(a) Illustration of a time-variant but spatial-invariant channel. (b) Illustration
of a time-variant and spatial-variant channel.

to the angle spread. Mathematically, this relationship can be expressed as:

DC ∝
1

θRMS
. (2.37)

A larger angle spread implies a larger phase difference caused by multi-paths
when observed at different spatial locations. Consequently, the distance at
which the same channel is observed will be shorter. Up to this point, we
have discussed how the wireless channel varies in both time domain and spa-
tial domain. Figures 2.26(a) and 2.27(a) illustrate different channel behav-
iors. Specifically, Figure 2.26(a) depicts a time-varying but spatially invariant
channel, while Figure 2.26(b) illustrates a time-varying and spatially varying
channel. To provide further insight, Table 2.2 presents the typical values of
delay spread, Doppler spread, and angle spread in common environments.

In order to analyze the reasons for delay spread, Doppler spread, and angle
spread in real environments, let’s consider a scenario where a user is trans-
mitting signals to a base station located at a distant location, as depicted
in Figure 2.27. From the perspective of the base station, the user and its
nearby environment can be considered as a single point due to the long dis-
tance between them. Therefore, the resulting delay spread and angle spread
are not influenced by the user’s nearby environment. However, if there are
moving objects in the vicinity of the user, such as vehicles, Doppler spread
will be caused due to the relative motion between the user and the objects.
As the transmitted signal travels away from the user’s nearby environment, it
may encounter distant scattering objects such as high buildings or mountains.
At this stage, since the distances to different scattering objects are usually
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TABLE 2.2
The values of delay spread, angle spread, and Doppler spread in common
environments.

FIGURE 2.27
Illustration of a scenario with different channel spreads.

significant, the arrival times and incident angles of the signal from these ob-
jects can vary significantly, leading to delay spread and angle spread. How-
ever, as these scattering objects are typically stationary, Doppler spread is not
caused during this stage. Before reaching the base station, the transmitted sig-
nals will interact with the nearby environment surrounding the base station.
Since the travel distances of different multi-paths caused by the nearby envi-
ronment are similar, the arrival times of these paths are also similar, resulting
in no delay spread in this stage. Additionally, considering that base stations
are often situated on higher ground, there are usually no moving objects in
close proximity, and therefore no Doppler spread is caused during this stage.
However, since the arrival angles of the different multi-paths are distinct, angle
spread at the receiver side is generated during this stage.
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2.5 Wireless Channel for Communication Systems

After completing the introduction on multi-antenna multi-path time-varying
channels, our objective in this section is to present the channel models put
forth by the 3GPP. Specifically, we will focus on the spatial channel model
(SCM). The SCM is a ray-based channel model designed to simulate the be-
havior of signals in complex environments with multiple antennas and paths.
It takes into account various factors, including angle spread, delay spread, and
shadowing effect, in order to generate representative paths for accurate signal
simulation.
Application scenarios and large-scale fading models: The SCM sup-
ports a signal bandwidth of up to 5 MHz, operating at a carrier frequency of
1900 MHz. It enables the simulation of three distinct scenarios: urban micro-
cell, urban macrocell, and suburban macrocell. Table 2.3 presents important
parameters for comparison across these scenarios. In the macrocell scenario,
where the base station covers a large area, the likelihood of receiving line-
of-sight (LoS) signals is considerably low. Consequently, LoS signals are not
considered in this scenario. Conversely, in the microcell scenario, where the
base station covers a smaller area, LoS signals can potentially be received.
Thus, we define two additional scenarios: microcell LoS and microcell non-
line-of-sight (NLoS), based on whether LoS signals are received or not. The
path loss models utilized in the three scenarios differ, and their details are
presented in Table 2.4. Within this table, the constant C assumes values of
0 dB and 3 dB, respectively. Moreover, hBS and hMS represent the heights of
the base station and the mobile station (user), respectively, in meters. The
parameter d corresponds to the distance between the base station and the
user, also measured in meters, while fc denotes the carrier frequency in MHz.
The specific parameters for the macrocell and microcell scenarios are listed in
Table 2.5. By substituting these values into the equations presented in Table
2.4 and simplifying, we obtain the simplified path loss models, as displayed
in Table 2.6. Furthermore, Figure 2.28 provides a graphical representation of
the relationship between path loss and distance in the different scenarios.
Small-scale fading models: In terms of small-scale fading models, the multi-
antennas multi-paths model SCM employed is depicted in Figure 2.29. Within
the figure, the base station (BS) serves as the transmitter, while the mobile
station (MS) functions as the receiver. The SCM incorporates the contribu-
tions of multiple paths to accurately represent small-scale fading in realistic
scenarios. Additionally, the AoD, denoted as θn,m,AoD, for the m-th subpath
of the n-th path originating from the BS, as well as the AoA, denoted as
θn,m,AoA, for the m-th subpath of the n-th path arriving at the user can be
expressed as:

θn,m,AoD = θBS + δn,AoD +∆n,m,AoD,

θn,m,AoA = θMS + δn,AoA +∆n,m,AoA,
(2.38)



40 Wireless Channels and Signal Models

TABLE 2.3
The main parameter settings of the three simulation scenarios in the SCM.

TABLE 2.4
The path loss models of the three simulation scenarios in the SCM.

TABLE 2.5
The parameter settings of the three macrocell and microcell scenarios in the
SCM.

TABLE 2.6
The simplified path loss models of different scenarios in the SCM.
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FIGURE 2.28
Illustration of the relationship between distance and path loss in different
scenarios of SCM.

FIGURE 2.29
Illustration of the multi-antennas multi-path small-scale fading models in
SCM.

where θBS and θMS are the AoD and AoA of LoS path, δn,AoD and δn,AoA

are the AoD difference and AoA difference between nth path and LoS path,
which will be introduced later. ∆n,m,AoD and ∆n,m,AoA are the AoD offset and
AoA offset between m subpath of n path and n path, as listed in Table 2.7.
Note that the subpaths between the base station and the user will be aligned
randomly to present the signal phase close to the uniform distribution, as
shown in Figure 2.30.
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TABLE 2.7
The AoA and AoD offsets of subpath in the SCM.

FIGURE 2.30
Illustration of the random subpath association between the base station and
mobile station in SCM.

Figure 2.29 presents the small-scale fading models utilized in the SCM. In
the subsequent discussion, we will introduce the parameter settings involved in
these models. Empirically derived from real measurements, the angle spread,
delay spread, and shadowing effect are considered as correlated random vari-
ables following a log-normal distribution. Specifically, the angle spread and
delay spread exhibit a positive correlation with a coefficient of ρDA = 0.5.
Conversely, negative correlations can be observed between the delay spread
and shadowing effect, as well as between the angle spread and shadowing
effect, with correlation coefficients of ρAF = ρDF = −0.6, as illustrated in
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TABLE 2.8
Illustration of the random subpath association between the base station and
mobile station in SCM.

Table 2.8. Based on these parameter settings, the SCM incorporates three
independent Gaussian random variables and the specified correlations to gen-
erate values for the angle spread, delay spread, and shadowing effect, as de-
scribed in Eqs. (2.39) and (2.40): αj

βj
γj

 =

 1 ρDA ρDF

ρDA 1 ρAF

ρDF ρAF 1

1/2  ωj1

ωj2

ωj3

+

 0 0 0
0 0 0
0 0 ξ

1/2  ξ1
ξ2
ξ3

 ;

(2.39)

σDS,j = 10εDSαj+µDS

σAS,j = 10εASβj+µAS

σSF,j = 100.1(σSHγj)

(2.40)

By utilizing these generated results, additional parameters such as delay, AoD,
and AoA can be computed to account for the combined effect of multiple paths
in the channel model.

In Eq. (2.39), ωj1, ωj2, and ωj3 denote three independent Gaussian ran-
dom variables, while ξ1, ξ2, and ξ3 represent another set of three indepen-
dent Gaussian random variables. In Eq. (2.40), the subscript j corresponds
to the j-th base station. The variables σDS, σAS, and σSF denote the delay
spread, angle spread, and shadowing effect, respectively. Furthermore, µDS

and µAS represent the mean values of σDS and σAS, respectively, after ap-
plying a common logarithm operation. For example, µDS can be calculated as
µDS = E{log10(σDS)}. Additionally, εDS, εAS, and σSH denote the variances of
σDS, σAS, and σSF, respectively, after applying a common logarithm operation.
For instance, (εDS)

2 can be computed as (εDS)
2 = E{[log10(σDS,j)− (µDS)]

2}.
First, let us discuss the generation of parameters for each path, including

delay, AoD, and AoA. Once the values of σDS, σAS, and σSF have been deter-
mined, the delay, power, AoD, and AoA of each path can be generated and
subsequently combined to simulate the multi-path effects. The generation of
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the delay for a specific path can be expressed as follows:

τ
′

n = −γDSln(zn), n = 1, 2, · · · , N, (2.41)

where N is the number of paths, zn ∼ U(0, 1) is a standard uniformly
distributed random variable, and γDS is a constant ratio factor related to
the considered scenario. To obtain the delay values for all paths, we com-
pute Eq. (2.41) and arrange the results in ascending order. Let’s denote the
computed delays as τ

′

(1), τ
′

(2), . . . , τ
′

(n), where the subscript (1) represents the

path with the smallest delay, and subscript (n) represents the path with the
largest delay. Next, we normalize these delay values by subtracting τ

′

(1), re-

sulting in τn = τ
′

(n) − τ
′

(1) to obtain a set of normalized delays, denoted as
0 = τ1 < τ2 < . . . < τn. Now, let’s discuss the generation of power for each
path. The power generation for a particular path can be expressed as:

P
′

n = e
(1−γDS)τn
γDSσDS · 10−0.1ξn , n = 1, 2, · · · , N, (2.42)

where ξn ∼ N (µ, σ2) is i.i.d.5 Gaussian random variable and σ is given as 3
dB. After obtaining P

′

n from Eq. (2.42), we normalize the results to ensure
the power sum of all paths will become 1, that is,

Pn =
P

′

n∑N
i=1 P

′
n

. (2.43)

Then, we can compute the AoD and AoA according to Eqs. (2.44) and (2.45).

δ
′

n ∼ N [0, (γAS · σAs)
2], n = 1, 2, · · · , N. (2.44)

δn,AoA ∼ N (0, σ2
n,AoA);

σn,AoA = 104.12◦ · (1− e−0.2175|10log10(Pn)|)
(2.45)

In Eq. (2.44), γAS is a constant ratio factor. After generating δ
′

(n) randomly, we
also compute the absolute value of the results and arranged them in ascending
order to obtain |δ′

(1)| < |δ
′

(2)| < · · · < |δ
′

(N)|, where the AoD of nth path can

be obtained as δn,AoD = δ
′

(n).
After discussing the parameter generation in the macrocell scenario, it

is important to note that the parameter generation in the urban microcell
scenario exhibits a slight difference. Specifically, in Eq. (2.46), the method
employed by the urban microcell scenario to generate the delay for each path
differs from Eq. (2.41). The generation of delay for each path in the urban
microcell scenario can be expressed as follows:

τ
′

n ∼ N(0, 1.2µs), n = 1, 2, · · · , N. (2.46)

5The abbreviation of independent, identically distributed.
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Similarly, we proceed to normalize the results by subtracting the minimum
value and arranging them in ascending order to obtain 0 = τ1 < τ2 < . . . < τn.
However, if the LoS scenario is considered, the delay of the LoS path will be
set as 0, indicating that it has the shortest delay among all paths. Next, let’s
discuss the generation of power for each path. The power generation for a
particular path can be expressed as:

P
′

n = 10−(τn+0.1zn), n = 1, 2, · · · , N, (2.47)

where zn ∼ N (µ, σ2) is the i.i.d. Gaussian random variable and σ is set as 3
dB. If LoS scenario is considered, the power generation of each path can be
expressed as:

Pn =
P

′

n

(K + 1)
∑N

i=1 P
′
i

. (2.48)

In Eq. (2.48), since the power of LoS path PLoS = K
K+1 will be much greater

than other paths, Ricean K factor is introduced to simulate the ratio between
LoS path and total power. Specifically, the probability of having LoS path and
factor K can be computed using Eqs. (2.49) and (2.50).

PrLoS = (
300− (dMS-BS)

300
), dMS-BS < 300 (m). (2.49)

K[dB] = 13.0− 0.03× (dMS-BS). (2.50)

In Eqs. (2.49) and (2.50), dMS-BS represents the distance between the base
station and the user. Finally, AoD and AoA can be computed as:

δn,AoD ∼ U(−40◦, 40◦), n = 1, 2, · · · , N. (2.51)

δn,AoA ∼ N (0, σ2
n,AoA), n = 1, 2, · · · , N ;

σn,AoA = 104.12◦ · (1− e−0.265|10log10(Pn)|).
(2.52)

The generation method described earlier pertains to the macrocell scenario.
However, if the LoS scenario is considered, the AoD and AoA of the LoS
path follow the LoS direction between the base station and the user. The
detailed parameter settings of SCM are provided in Table 2.9. In addition to
the scenarios, the antenna properties of both the transmitter and receiver sides
also play a crucial role in determining the relationship between the transmitted
signal and the received signal. These properties are also defined in the SCM.
Specifically, SCM defines the antenna pattern and antenna gain of the base
station side as shown in Eq. (2.53) and Eq. (2.54), respectively.

A(θ)[dB] = −min[12(
θ

θ3-dB
)2, Am],−180◦ ≤ θ < 180◦. (2.53)

G(θ) = 100.1A(θ). (2.54)



46 Wireless Channels and Signal Models

TABLE 2.9
The channel scenarios and corresponding parameters in the SCM.

In Eqs. (2.53) and (2.54), θ represents the main radiation angle of the
antenna, θ3-dB is the 3-dB beamwidth, and Am is the maximum attenuation.
Considering an antenna pattern supporting three sectors, θ3-dB will be set as
70◦ and Am will be set as 20 dB, as shown in Figure 2.31(a). Considering an
antenna pattern supporting six sectors, θ3-dB will be set as 35◦ and Am will be
set as 23 dB, as shown in Figure 2.31(b). The antenna of the user is usually as-
sumed to be omnidirectional. After completing the aforementioned parameter
computations, the obtained results will be utilized to generate multi-antenna
MIMO channel coefficients. In the context of a MIMO channel, where the
transmitter is equipped with NT antennas and the receiver has NR antennas,
as illustrated in Figure 2.32, the channel coefficient corresponding to the n th
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FIGURE 2.31
(a) Antenna pattern of a three-sector antenna. (b) Antenna pattern of a six-
sector antenna.

FIGURE 2.32
Illustration of a MIMO system with NT transmitting antennas and NR re-
ceiving antennas.

path can be represented by a NT ×NR matrix, as shown in Eq. (2.55).

Hn(t) =


h1,1,n(t) h1,2,n(t) · · · h1,NT,n(t)
h2,1,n(t) h2,2,n(t) · · · h2,NT,n(t)

...
...

. . .
...

hNR,1,n(t) hNR,2,n(t) · · · hNR,NT,n(t)

 . (2.55)

The relationship between the transmitted signal and the received signal is



48 Wireless Channels and Signal Models

expressed as:

y(t) =
N∑

n=1

Hn(t)x(t− τn) + n(t), (2.56)

where y(t) ∈ CNR×1 is the receive signal, x(t) ∈ CNT×1 is the transmitted
signal, and n(t) ∈ CNR×1 is the noise.

If the NLoS scenario is considered, the (u, s) element of Eq. (2.55) can be
expressed as:6

hu,s,n(t) =

√
PnσSF
M

M∑
m=1

√GBS(θn.m.AoD)exp(j[kdssin(θn.m.AoD) + Φn,m])×√
GMS(θn.m.AoS)exp(j[kdusin(θn.m.AoA)])×

exp(jk||v||cos(θn.m.AoA − θv)t)

,
(2.57)

where M is the number of subpaths of a path, GBS and GMS stand for the
antenna gain of the base station and the user, ds and du represent the distance
from a reference point to the sth antenna of the base station and the distance
from a reference point to the uth antenna of the user, Φn,m is the phase of
mth subpath, ||v|| and θv are the magnitude and direction of user velocity, and
k = 2π/λ is the number of waves. On the other hand, in the urban microcell
LoS scenario is considered, the (u, s) element of Eq. (2.55) can be expressed
as:

hLoSu,s,1(t) = hu,s,1(t)+

√
KσSF
K + 1

×

 √
GBS(θBS)exp(j[kdssin(θBS)])×√

GMS(θMS)exp(j[kdusin(θMS) + ΦLoS])×
exp(jk||v||cos(θMS − θv)t)

.
(2.58)

and
hLoSu,s,n(t) = hu,s,n(t), n ̸= 1. (2.59)

In Eq. (2.58), hu,s,n(t) is as defined in Eq. (2.57). As previously mentioned, K
is the Ricean K factor, θBS, θMS, and ΦLoS are the AoD, AoA, and phase of LoS
path, respectively. The biggest difference between Eq. (2.57) and Eq. (2.58) is
that the LoS path is considered in n = 1 case with a power ratio K/(K+1) of
the total power, so that the sum power of remaining NLoS paths is 1/(K+1)
of the total power. The whole parameter generation procedure is summarized
in Figure 2.33.

6Please refer to ref. [81] for more details.
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FIGURE 2.33
Illustration of the model parameter generation process in SCM.



3

OFDM Principles

3.1 OFDM Basics

Considerations regarding data transmission speed revolve around the prod-
uct of the symbol rate per second and the bit rate per symbol. To enhance
data transmission speed, two approaches can be adopted: either increasing the
symbol rate per second or the bit rate per symbol. Raising the bit rate per sym-
bol necessitates achieving a higher signal-to-noise ratio (SNR) on the receiver
side, which in turn requires a higher transmitted power from the transmitter.
However, such an increase may be limited by cost constraints and regula-
tory provisions. Conversely, augmenting the symbol rate per second entails
employing a communication system with a wider bandwidth, thereby necessi-
tating the mitigation of more pronounced frequency-selective fading channels
to fully exploit the benefits of the expanded bandwidth. Consequently, the
appropriate design of transceivers to ensure robust transmission quality even
in the presence of severe frequency-selective fading channels has emerged as
a prominent research area. To address the growing need for increased data
transmission speeds to support a wide range of applications, communication
systems must employ larger bandwidths. However, this expansion in band-
width introduces the challenge of severe frequency-selective fading channels,
resulting in inter-symbol interference (ISI). Traditional single-carrier systems
require time-domain equalizers with longer durations to combat ISI, placing
additional demands on the transceiver. Alternatively, the adoption of a multi-
carrier system can alleviate the ISI effect by reducing the bandwidth assigned
to each carrier, mitigating the need for demanding time-domain equalizers.
In multi-carrier systems, as shown in Figure 3.1, the bandwidth allocated to
each subcarrier is reduced, thereby reducing the impact of frequency-selective
fading. In fact, the fading experienced by each subcarrier can be approxi-
mated as flat-fading, significantly reducing the complexity of the equalizer.
In summary, as communication systems gravitate toward larger bandwidths,
multi-carrier systems, particularly orthogonal frequency division multiplex-
ing (OFDM) systems, are preferred over single-carrier systems. OFDM sys-
tems offer higher frequency efficiency and simpler transceiver architectures
compared to other implementations. In this section, our objective is to in-
troduce the concept and design considerations of OFDM systems, including
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FIGURE 3.1
Illustration of a single-carrier signal spectrum and a multi-carrier signal spec-
trum.

FIGURE 3.2
(a) Illustration of an OFDM signal spectrum. (b) Illustration of an OFDM
signal allocation in the frequency and time domains.

peak-to-average power ratio (PAPR), signal detection, and channel estima-
tion. We will also present mathematical models of OFDM systems for com-
prehensive understanding. Finally, we will expand our discussion to multi-
user systems by introducing orthogonal frequency division multiplexing access
(OFDMA) and single-carrier frequency division multiple access (SC-FDMA).

OFDM transceivers: As a multi-carrier transmission technology, OFDM
systems allocate transmitted symbols to a set of orthogonal subcarriers. In
particular, for two subcarriers with central frequencies f1 and f2, the orthog-
onality condition can be defined as follows:∫ T

0

ej2πf1t · e−j2πf2tdt = 0. (3.1)

In Eq. (3.1), we can further deduce that the orthogonality condition is satisfied
when f1 − f2 = n/T , where n ∈ R. This implies that the minimum frequency
spacing between two different subcarriers is f0 = 1/T . Therefore, when uti-
lizing a set of orthogonal subcarriers for data transmission, the allocation of
resources in the frequency and time domains is structured as depicted in Fig-
ure 3.2. In Figure 3.2(a), we illustrate the spectrum of an OFDM signal using
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FIGURE 3.3
Illustration of the OFDM transmitter structure.

a rectangular window function. It is worth noting that the rectangular window
function, which will be discussed later in this section, is the most fundamental
window function used in OFDM systems. In such a system, the spectrum of
each subcarrier takes the shape of a sinc function. Notably, the peak value of
each sinc function occurs at the null values of the other sinc functions, thereby
ensuring no mutual interference between any two subcarriers. Consequently,
there is no requirement for an additional guard band to prevent interference.
As a result, OFDM systems can achieve a higher spectrum utilization rate,
which is a significant advantage of this system. The time-frequency resource
allocation of a typical OFMA system is also illustrated in Figure 3.2(b) for
reference, which will be further discussed in later sections.

The structure of an OFDM transmitter is depicted in Figure 3.3. The pro-
cess of generating OFDM signals can be divided into the following steps:
(1) Combination of N data symbols: The N data symbols, denoted as
X0, X1, · · · , XN−1, are combined into a block. This block of symbols is
then subjected to a serial-to-parallel conversion (S/P) operation to paral-
lelize the symbols. (2) Orthogonal subcarrier modulation: The parallelized
symbols are modulated using an orthogonal set of subcarriers, denoted as
ϕ0(t), ϕ1(t), · · · , ϕN−1(t). Each subcarrier is responsible for carrying one sym-
bol, and the modulation process generates individual subcarrier signals. (3)
Superposition of subcarrier signals: The individual subcarrier signals are su-
perimposed to generate the final OFDM signal, denoted as s(t). Based on
the aforementioned steps, the transmitted OFDM signals can be expressed as
follows:

s(t) =


N−1∑
k=0

Xkϕk(t), 0 ≤ t ≤ T,

0, otherwise,

(3.2)



OFDM Basics 53

FIGURE 3.4
Illustration of the OFDM receiver structure.

where T is the OFDM signal length and ϕk(t) is the subcarrier function as:

ϕk(t) =
1√
T
ej2π

k
T t. (3.3)

In contrast, the structure of an OFDM receiver is illustrated in Figure 3.4.
The steps involved in receiving OFDM signals can be divided as follows: (1)
Matched filtering: The received signals are fed into the corresponding matched
filters of theN subcarriers. Each subcarrier signal is processed by its respective
matched filter. (2) Combination of matched filter outputs: The outputs of the
N matched filters are combined to form a block of received symbols, denoted
as Y0, Y1, · · · , YN−1. This block of symbols is then subjected to a parallel-to-
serial conversion (P/S) operation to convert them into a sequentialized format.
If we assume that there is no channel distortion or noise present at this stage,
the received signal can be considered as equal to the transmitted signal, i.e.,
r(t) = s(t). In this case, the operation of the matched filter can be expressed
as follows:

Yi =

∫ T

0

s(t)ϕ∗i (t)dt =
1

T

N−1∑
k=0

Xk

∫ T

0

ej2π
k−i
T t = Xi. (3.4)

In Eq. (3.4), it is evident that only the symbol corresponding to k = i can
be successfully received. This is a consequence of the orthogonality property
inherent in the subcarrier sets used in OFDM systems. The orthogonality
ensures that symbols transmitted by different subcarriers do not interfere with
each other during transmission. As a result, the OFDM system can employ
corresponding matched filters to receive symbols from all subcarriers without
any mutual interference. This property greatly simplifies the implementation
of OFDM systems and contributes to their ease of use.

After introducing the concept of OFDM transceivers for analog signal
transmission, we now extend the application of OFDM systems to digital
signal transmission. Digital signal transmission is the predominant mode of
data communication in contemporary wireless and mobile communications.
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FIGURE 3.5
Illustration of the transceiver structure for digital OFDM systems.

The OFDM systems designed for digital signal transmission can be mathe-
matically expressed as follows:

s[n] = s(t)|t=nT
N


1

N

N−1∑
k=0

Xke
j2π k

N n, 0 ≤ n ≤ N − 1,

0, otherwise,

= IDFT{Xk}. (3.5)

In Eq. (3.5), it is evident that s[n] represents the inverse discrete Fourier
transform (IDFT) results of Xk. Likewise, if we disregard the influence of
the channel and noise at this stage, the received signal can be represented as
r[n] = s[n]. Consequently, the operation of the matched filter, as described in
Eq. (3.4), can be adapted to the digital domain as follows:

Yi = DFT{r[n]} =
N−1∑
n=0

s[n]e−j2π i
N n =

N−1∑
k=0

Xkδ[k − i] = Xi. (3.6)

In the digital version, the matched filters in the analog domain are substi-
tuted with DFT operations in the digital OFDM systems. This replacement
maintains the property that symbols transmitted by different subcarriers do
not interfere with each other during transmission, enabling successful recep-
tion in OFDM systems. The transceiver structure for digital OFDM systems
is depicted in Figure 3.5. The generation of OFDM signals involves the fol-
lowing steps: (1) Combining N data symbols into a block X0, X1, · · · , XN−1

and performing S/P to parallelize the symbols. (2) Utilizing IDFT operations
to generate N time-domain signals s[0], s[1], · · · , s[N − 1], followed by P/S to
generate digital signals. (3) Converting the digital signals to analog signals
using a digital-to-analog converter (DAC) to obtain the analog OFDM sig-
nals for actual data transmission. The reception of OFDM signals involves
the following steps: (1) Converting the received signals to digital form using
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FIGURE 3.6
Illustration of the ISI in OFDM systems.

FIGURE 3.7
Illustration of guard periods in OFDM systems.

an analog-to-digital converter (ADC) to obtain digital received signals. (2)
Sequentializing the digital received signals using P/S, and applying DFT op-
erations to obtain the parallelized transmitted symbols. (3) Performing P/S
on the parallelized transmitted symbols to output the data symbol sequences.
In the literature, the terms “OFDM signals” and “OFDM symbols” are used
interchangeably. Therefore, the processes described above can be referred to
as OFDM modulation and demodulation processes. In other words, OFDM
transmitters modulate N data symbols into an OFDM symbol, while OFDM
receivers demodulate the OFDM symbol to retrieve the N data symbols. In
this book, “OFDM signals” refer to signals without a specific format, whereas
“OFDM symbols” refer to a data block containing N data symbols (e.g., s(t)
in Eq. (3.2) or s[n] in Eq. (3.5)).

In the previous discussions of OFDM systems, we focused on the ideal
scenario without considering the effects of the underlying channel. However, in
practical implementations, the presence of multipath channels can introduce
interference between adjacent OFDM symbols, leading to ISI, as shown in
Figure 3.6. To mitigate the ISI effect, a guard period, also known as an idle
period, is introduced between adjacent OFDM symbols, as depicted in Figure
3.7. As long as the duration of the guard period is longer than the channel
duration, OFDM symbols will not interfere with each other. While the guard
period effectively addresses the ISI effect, it also disrupts the orthogonality
of OFDM subcarriers, as shown in Figure 3.8. Consider a channel with two
paths: if the OFDM receiver uses the arrival time of the first path as the
reference for performing DFT demodulation, the subcarrier corresponding to
the second path will encounter the idle period during the DFT duration,
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FIGURE 3.8
Illustration of guard periods and ICI in OFDM systems.

FIGURE 3.9
Illustration of CP in OFDM systems.

FIGURE 3.10
The impact of CP to subcarriers in OFDM systems.

resulting in an incomplete subcarrier. Consequently, the orthogonality between
different subcarriers from different paths is compromised, leading to inter-
carrier interference (ICI) and affecting the accurate reception of symbols from
different subcarriers.

To maintain the orthogonality among subcarriers and ensure the integrity
of subcarrier waveforms across different paths during the DFT duration,
OFDM transceivers employ a technique known as cyclic prefix (CP). This
involves appending a sequence of Ng symbols, copied from the tail of the sig-
nals, to the beginning of the transmitted signals, as depicted in Figure 3.9. The
CP acts as a guard interval that eliminates ISI and helps restore the orthog-
onality of subcarriers. Specifically, by incorporating the CP, the subcarriers
traversing different paths can maintain their completeness, thereby preserv-
ing the orthogonality among subcarriers and preventing interference within
the DFT duration, as shown in Figure 3.10. It is important to note that the
duration of the CP in OFDM systems should exceed the channel duration to
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FIGURE 3.11
Illustration of the digital OFDM transmitter structure with CP mechanism.

avoid the presence of ISI due to an insufficient CP length. By properly design-
ing the duration of the CP, the receiver can remove the interference caused
by the channel and achieve accurate symbol detection from each subcarrier.

The transmitter architecture for digital OFDM systems incorporating the
CP functionality is illustrated in Figure 3.11. In this configuration, the last
Ng symbols of the IDFT time-domain signals s[0], s[1], · · · , s[N − 1] are re-
dundantly placed at the beginning of the transmitted signals. Subsequently,
the signals undergo DAC to generate analog signals. The resulting waveform,
consisting of the original OFDM symbols preceded by the CP, is referred to
as a complete OFDM symbol, as depicted in Figure 3.12. The signal model
for this configuration can be represented as follows:

u[n] =


1

N

N−1∑
k=0

Xke
j2π k

N n−Ng , 0 ≤ n ≤ N +Ng − 1,

0, otherwise,

(3.7)

The portion of the transmitted signal containing the original OFDM symbols
is referred to as the useful part. The receiver architecture for digital OFDM
systems incorporating the CP functionality is depicted in Figure 3.13. Once
the received signals are converted into digital form through ADC, the CP is
removed before inputting the signals into the DFT operations to extract the
OFDM symbols in each subcarrier. It is important to note that precise timing
synchronization is crucial in this step to accurately determine the starting po-
sition of the CP. Inaccurate timing synchronization can result in performance
degradation as it may lead to the removal of some portions of the useful parts
along with the CP.

The CP mechanism in OFDM systems serves multiple purposes, including
the mitigation of ISI and ICI, while also simplifying the complexity involved
in the equalization process of OFDM transceivers. When disregarding the
influence of noise, the received signal, denoted as v[n], is produced after the
transmission of complete OFDM symbols through the channel. This can be
mathematically expressed as follows:

v[n] = u[n] ∗ h[n], 0 ≤ n ≤ N +Ng + Lh − 2, (3.8)
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FIGURE 3.12
Illustration of the complete OFDM symbols.

FIGURE 3.13
Illustration of the digital OFDM receiver structure with CP mechanism.

where h[n] is the channel impulse response and Lh is the channel length. When
the length of the CP exceeds the length of the channel, upon removal of the
CP, the linear convolution between the transmitted signal u[n] and the channel
impulse response h[n] as depicted in Eq. (3.8) undergoes a transformation.
Specifically, this linear convolution is converted into the circular convolution
operation between the original OFDM symbol s[n] and h[n]. Mathematically,
this can be expressed as follows:

r[n] = s[n]⊙N h[n], 0 ≤ n ≤ N − 1. (3.9)

By applying DFT operations on r[n] in Eq. (3.9), we can exploit the property
of circular convolution to derive the following result:

Yk = DFT{r[n]} = XkHk, 0 ≤ k ≤ N − 1, (3.10)

where

Hk = DFT{h[n]}and Xk = DFT{s[n]}; , 0 ≤ k ≤ N − 1. (3.11)

From Eq. (3.10), it is worth noting that to recover the transmitted data sym-
bol, the transceiver only needs to eliminate the channel’s effect on each sub-
carrier.

X̂k = Yk/Hk. (3.12)

The aforementioned discussions highlight an important observation: in cases
where the CP length surpasses the channel length, OFDM systems can em-
ploy a simple one-tap equalizer to mitigate the channel’s effect. This serves as
another significant function of the CP in OFDM systems. By leveraging the
orthogonality between subcarriers and the CP mechanism, OFDM systems ef-
fectively mitigate the impact of ISI in frequency-selective fading environments.
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FIGURE 3.14
Illustration of the equalization complexity of OFDM systems and single-carrier
systems.

Moreover, OFDM systems significantly reduce the complexity of equalization
by simplifying signal models. This stands in stark contrast to single-carrier
systems. Consequently, OFDM systems enhance the performance and flexi-
bility of communication systems with wider bandwidth, which is a key factor
contributing to their status as the predominant technology for high-speed
mobile communications. Figure 3.14 illustrates a comparison of equalization
complexity between single-carrier and OFDM systems. Notably, the equaliza-
tion complexity of OFDM systems increases linearly with the channel length,
whereas that of single-carrier systems exhibits an exponential growth with the
channel length.

In the previous derivations, we made the assumption that OFDM systems
employ rectangular window functions, resulting in the subcarrier spectrum
being a superposition of sinc functions. However, sinc functions exhibit slow
sidelobe decay, which can potentially cause interference to users operating
in adjacent bandwidths when transmitting OFDM signals. This interference
is illustrated in Figure 3.15. To address this limitation, conventional OFDM
systems utilize a carefully designed window function, which is multiplied with
the transmitted signals. This window function aims to reduce the sidelobe
effect and minimize interference with other users. Consequently, the OFDM
symbols can be expressed as follows when the window function is applied:

u[n] =
1

N
gT [n]

N−1∑
k=0

Xke
j2π k

N (n−Ng), 0 ≤ n ≤ N +Ng +Nw − 1, (3.13)

where gT [n] is the window function with length N + Ng + Nw − 1, and Nw

is the edge length of the smooth extension part on both sides. The raised
cosine function is the commonly used window function of OFDM systems,
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FIGURE 3.15
Illustration of the signal power spectrum in OFDM systems.

being expressed as:

gT [n] =



1

2
+

1

2
cos[π +

nπ

β(N +Ng)
], 0 ≤ n ≤ Nw − 1,

1, Nw ≤ n ≤ N +Ng − 1,

1

2
+

1

2
cos[

[n− (N +Ng)]π

β(N +Ng)
], N +Ng ≤ n ≤ N +Ng +Nw − 1,

(3.14)
In the given expression, the parameter β = Nw/(N +Ng) represents the roll-
off factor, which can be utilized to control the rate at which the sidelobes
decrease. A higher roll-off factor results in a more rapid decrease in side-
lobe levels. However, it also leads to a larger OFDM symbol size and more
pronounced distortion at the symbol edges. Conversely, a lower roll-off fac-
tor causes slower sidelobe decay, which can result in increased interference to
other users. Therefore, OFDM system designers must strike a suitable bal-
ance between these two considerations during implementation. Figure 3.16
illustrates a comparison of the OFDM spectrum using different window func-
tions with varying roll-off factors, showcasing the impact of these factors on
sidelobe characteristics.

The complete architecture of an OFDM transceiver is depicted in Figure
3.17. By utilizing orthogonal subcarriers for data transmission, the adverse
effects of frequency-selective fading on each subcarrier are significantly mit-
igated. As a result, OFDM systems can accommodate larger delay spreads
and employ longer OFDM symbol lengths. Additionally, the use of well-
established DFT and IDFT operations facilitates efficient digital implemen-
tation of OFDM systems, enabling faster execution times. The introduction
of the CP mechanism in OFDM systems effectively eliminates ISI between
adjacent OFDM symbols while maintaining the orthogonality between sub-
carriers. This, in turn, simplifies the equalization process by enabling the use
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FIGURE 3.16
Illustration of the roll-off factor effect to signal power spectrum in OFDM
systems.

FIGURE 3.17
Illustration of the comprehensive transceiver structure in OFDM systems.

of one-tap equalizers, leading to a substantial reduction in the complexity of
OFDM receivers. In conclusion, OFDM systems offer significant flexibility in
the implementation of mobile communication systems. Given that different
subcarriers experience distinct channel conditions, dynamic transmission con-
trol techniques can be employed to optimize system performance based on
the prevailing channel conditions. For example, dynamic and adaptive adjust-
ment of frequency and/or power resources can enhance system throughput. It
is worth noting that the SNR definition of OFDM systems differs from that
of conventional communication systems due to the presence of the CP and
guard bands. Specifically, the SNR definition in conventional communication
systems can be expressed as follows:

SNR =
Psignal

Pnoise
=
EsRs

N0W
, (3.15)

where Es is the data symbol power, Rs is the data symbol transmission rate,
N0 is the noise power spectrum density, and W is the system bandwidth.
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FIGURE 3.18
Illustration of the useful part for data transmission in OFDM systems.

However, in OFDM systems, a certain number of subcarriers are intentionally
reserved and not utilized for signal transmission, forming the guard band.
This is done to mitigate interference. As shown in Figure 3.18, assuming the
number of effective subcarriers used for data transmission is denoted as Ndata,
the length of the DFT is denoted as N , and the length of the CP is denoted
as Ng, the data symbol transmission rate can be expressed as follows:

Rs =
Ndata

(N +Ng)
T
N

=
Ndata

(N +Ng)
W, (3.16)

where T = N/W is the OFDM symbol period.
By taking Eq. (3.15) into Eq. (3.16), we can obtain

SNR =
Es

N0

Ndata

N +Ng
. (3.17)

In Eq. (3.17), it is evident that the effective SNR of OFDM systems is slightly
reduced due to the energy allocated to the CP and guard band mechanisms.
This reduction in effective SNR is attributed to the fact that OFDM sys-
tems allocate a portion of the overall transmitted energy for these purposes,
resulting in a slightly diminished SNR available for data transmission.

3.2 The PAPR Problems in OFDM Systems and
Solutions

In the previously discussed OFDM systems, we established that an OFDM
symbol comprises N data symbols and is transmitted by the superposition of
N subcarriers. Due to the random nature of the data symbols, the superposi-
tion of these N subcarriers will also exhibit randomness, resulting in random
constructive or destructive interference. As a consequence, the strength of the
OFDM signals will fluctuate, giving rise to what is known as the PAPR is-
sue. Mathematically, the PAPR is defined as the ratio between the maximum
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instantaneous power and the average power, and it can be expressed as follows:

PAPR{s[n]} = |s[n]|2

E{|s[n]|2}
. (3.18)

A larger PAPR corresponds to greater variations in signal strength. Con-
sequently, to ensure the proper functioning of the power amplifier, its op-
erational range needs to be reduced to avoid distortions. This reduction in
operational range leads to decreased efficiency of the power amplifier, as it
operates at a lower average power level. Moreover, the increased PAPR also
poses challenges for the ADC and DAC. To maintain similar levels of quanti-
zation errors, the ADC and DAC must utilize a larger number of bits, which
results in increased costs associated with employing these components. In sum-
mary, a larger PAPR in OFDM systems can have implications such as reduced
power amplifier efficiency, narrower operational range, and increased costs for
ADC/DAC due to the need for higher-resolution quantization. Managing the
PAPR is an important consideration in OFDM system design to mitigate
these challenges. Considering an OFDM symbol comprising of N subcarriers,
the instantaneous power of the OFDM symbol can reach up to N times the
average power of the OFDM signal. To illustrate this, let’s consider an ex-
ample where N = 4 and the OFDM symbol is generated by 4 binary phase
shift keying (BPSK) symbols. Table 3.1 presents all possible PAPR values for
this scenario. It can be observed that the maximum PAPR is 6 dB, which
corresponds to the logarithm of N = 4. In practical OFDM systems, where
larger values of N are employed (often reaching hundreds or even thousands),
severe PAPR issues need to be addressed. Here, we introduce three solutions
to mitigate PAPR in current OFDM systems: PAPR lowering solutions with
signal distortion, PAPR lowering solutions without signal distortion, and the
linear amplification with nonlinear components (LINC) solution.

TABLE 3.1
The PAPR values with different BPSK symbol combinations in OFDM sys-
tems.
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PAPR lowering solution with signal distortion: The PAPR lowering
solution with signal distortion aims to mitigate PAPR by removing or reduc-
ing signal components above a certain threshold, which may introduce signal
distortions. The key advantage of this approach is its simplicity and ease of
implementation. One common method used in practice is the clipping tech-
nique, where portions of the signal exceeding a specified threshold, denoted
as A, are replaced with the threshold value A. Mathematically, this can be
expressed as follows:

s[n] =

{
s[n], |s[n]| ≤ A,

Aejϕ{s[n]}, |s[n]| > A.
(3.19)

The clipping method, although effective in reducing PAPR, introduces non-
linear distortions to the signal. An improved approach is the peak windowing
method, which aims to reduce signal strength above a given threshold while
mitigating distortions. Instead of directly removing the signal portions exceed-
ing the threshold, the peak windowing method applies a predefined window
function to these portions, effectively reducing their signal strength to the
threshold value. The window function introduces a smoothing effect, helping
to mitigate distortions caused by the signal processing. However, it is impor-
tant to note that this method may still introduce out-of-band interference.
Figure 3.19 provides an illustration of the results obtained using the peak
windowing method. A comparison with the clipping method reveals that the
peak windowing method effectively reduces the out-of-band interference of
OFDM symbols. However, it is also evident that the mitigated interference is
still higher compared to distortionless signals. In summary, the peak window-
ing method offers an improved solution compared to the clipping method by
reducing distortions and out-of-band interference. However, it is important to
consider the trade-off between PAPR reduction and the level of interference
introduced in OFDM systems.

Another solution for reducing PAPR with minimal signal distortion is the
peak cancellation method, illustrated in Figure 3.20. In this method, the signal
s[n] obtained after applying the IDFT undergoes a peak detection operation to
identify signal portions that exceed a specified threshold A in terms of signal
strength. The detected peaks provide information about their amplitudes and
locations, which are then utilized to generate a cancellation signal with corre-
sponding amplitude and phase values. By subtracting this cancellation signal
from the original signal, the peak values can be reduced, thereby achieving
the desired goal. The operations can be expressed as:

z[n] = s[n]−
∑
i

aie
jϕif [n− ni], (3.20)

where f(.) is the pre-designed impulse function, ai is the amplitude of the peak
signal portions above the signal strength A, and ϕi is the phase of the peak
signal portions above the signal strength A. The peak cancellation method,
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FIGURE 3.19
Illustration of the results obtained using the peak windowing method in
OFDM systems. (a) OFDM symbol power spectrum. (b) OFDM time-domain
signal.

FIGURE 3.20
Illustration of the peak cancellation method structure when implemented.

as demonstrated in Figure 3.21, can effectively mitigate out-of-band interfer-
ence associated with PAPR problems through careful design of the impulse
function. By appropriately designing the impulse function, this method en-
sures that any undesired out-of-band interference is minimized or eliminated.
The figure visually illustrates how the peak cancellation method achieves this
objective.
PAPR lowering solution without signal distortion: The objective of
PAPR reduction solutions without signal distortion is to modify the origi-
nal signal according to certain rules, resulting in a form with reduced PAPR.
However, these modifying rules need to be known by the receiver, requiring
additional information to be transmitted during implementation. This section
introduces three PAPR reduction techniques without signal distortion: par-
tial transmit sequence (PTS), selected mapping (SLM), and tone reservation
(TR). The architecture of PTS1 is shown in Figure 3.22. In PTS, the original
data symbol blocks are divided into non-overlapping blocks X1,X2, . . . ,XM ,

1Please refer to ref. [82] for more details.
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FIGURE 3.21
Illustration of the results obtained using the peak cancellation method
in OFDM systems. (a) OFDM time-domain signal before cancellation.
(b) OFDM time-domain signal after cancellation.

FIGURE 3.22
Illustration of the partial transmit sequence structure when implemented.

which are then multiplied by different coefficients b1, b2, . . . , bM and fed into
the IDFT to generate OFDM symbols. By optimizing the coefficients, PAPR
can be reduced through the corresponding transformations. A larger value
of M generally leads to lower PAPR but also increases complexity. The
receiver also requires the coefficients sequence to successfully restore the
original signals, and this is achieved in current OFDM systems by using
a codebook stored in advance at both the transmitter and receiver. The
transmitter selects a sequence from the codebook and informs the receiver
of the sequence number, significantly reducing the overhead of transmitting
the entire coefficient sequence. The architecture of SLM2 is shown in Figure
3.23. SLM multiplies the original data symbol blocks X by different phase

2Please refer to ref. [82] for more details.
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FIGURE 3.23
Illustration of the selected mapping structure when implemented.

FIGURE 3.24
Illustration of the tone reservation structure when implemented.

sequences B(1),B(2), . . . ,B(M) to generate different candidate symbol blocks
X(1),X(2), . . . ,X(M). These candidates are then fed into the IDFT, and the
one with the lowest PAPR is selected as the transformed OFDM symbol s.
Similar to PTS, SLM requires the transmission of phase sequence information
to the receiver in advance. Finally, the architecture of TR3 is shown in Figure
3.24. TR preserves a portion of subcarriers to reduce the degree of freedom for
PAPR reduction. In TR-based OFDM systems, only N −L subcarriers out of
the total N subcarriers are used for data transmission, while L subcarriers are
reserved to transmit non-data symbols, thus lowering PAPR. However, this
design compromises spectrum efficiency since some subcarriers are dedicated
to non-data transmission. Consequently, adjusting the value of L to achieve a
good trade-off between PAPR and spectrum efficiency becomes an important
design consideration in such systems.
Linear amplification with nonlinear components: The LINC solution4

utilizes a special transformation to convert high-PAPR original signals into
equivalent signals with lower PAPR. This technique employs power ampli-
fiers to amplify these equivalent signals, as depicted in Figure 3.25, and com-
bines the amplified results to form the final OFDM signals. LINC is capable
of decomposing the original varying-envelope OFDM signals into two signal

3Please refer to ref. [82] for more details.
4Please refer to ref. [83] for more details.
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FIGURE 3.25
Illustration of the linear amplification with nonlinear components structure
when implemented.

components with constant envelope. These components are then separately
passed through identical power amplifiers, and a combiner is used to recon-
struct the amplified signals. Since the two signal components have constant
envelope characteristics, the power amplifiers can operate within a fixed lin-
ear range. An additional advantage of the LINC solution is the potential to
achieve higher amplification gains by employing nonlinear amplifiers without
introducing signal distortion. In Figure 3.25, the transmit signal s(t) can be
decomposed as follows:

s(t) = A(t) · ejϕ(t) = 1

2
r0e

j(ϕ(t)+θ(t))︸ ︷︷ ︸
s1(t)

+
1

2
r0e

j(ϕ(t)−θ(t))︸ ︷︷ ︸
s2(t)

, (3.21)

In the LINC solution, the original signals are represented by their envelope
A(t), phase ϕ(t), signal component 1 s1(t), and signal component 2 s2(t).
The phase relation is given by θ(t) = cos−1(A(t)/r0), where r0 is a constant
satisfying r0 ≥ Amax and Amax is the maximum value of |A(t)|. Eq. (3.21)
represents a general expression that can be applied to decompose any signals.
Following amplification by the power amplifiers and combining of the amplified
components, the final transmitted signals can be expressed as:

L · [G · s1(t) +G · s2(t)] = L ·G · 2 · s(t), (3.22)

In the LINC solution, the amplifier gain is denoted by G, and L represents
the signal loss after the combiner processing. For instance, in the case of a
common Wilkinson combiner, the value of L is set as 1/

√
2 in Eq. (3.22).

Consequently, the final transmit signals can be expressed as
√
2Gs(t). The

combiner efficiency can be defined as:

ηc(t) =
|
√
2Gs(t)|2

|Gs1(t)|2 + |Gs2(t)|2
= cos2θ(t) = (

A(t)

r0
)2. (3.23)
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TABLE 3.2
The comparison of different PAPR lowering solutions in OFDM systems.

In Eq. (3.23), it can be observed that the amplifier gain does not affect the
PAPR, while the combiner efficiency varies with the magnitude of the enve-
lope. Consequently, a higher PAPR results in a less stable combiner efficiency.
This issue becomes a key research focus when developing LINC solutions.
The selection of PAPR lowering solutions: When selecting a PAPR
reduction solution for OFDM systems, it is important to consider practical
aspects beyond just PAPR performance. Factors such as the impact on trans-
mit power, transmit speed, error rate, and implementation complexity should
also be taken into account. For example, in the case of the TR solution, a
portion of subcarriers is reserved for transmitting non-data symbols, which
results in a reduction in transmit speed. Additionally, to maintain a similar
transmit speed and error rate, OFDM systems employing TR may need to
increase the transmit power. When using PTS or SLM solutions, extra band-
width is required to transmit additional information to the receiver, leading
to a decrease in transmit speed. If the received extra information is not error-
free, it may result in the incorrect restoration of the original signals at the
receiver and an increase in the error rate. Moreover, PTS and SLM entail
higher computational complexity compared to other solutions, making them
less suitable for implementation on the user side. On the other hand, LINC
solutions do not impose such negative impacts on OFDM systems, but they do
require additional hardware for execution. In summary, PAPR reduction so-
lutions with signal distortion and LINC solutions can be directly employed in
existing OFDM systems without modifications to the receiver, whereas other
solutions necessitate adjustments to system specifications. Table 3.2 provides
an overview of the impact on OFDM systems and the required resources when
employing different PAPR reduction solutions.
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FIGURE 3.26
Illustration of the OFDM transceivers and the matrix signal models.

3.3 OFDM Transceiver Designs

In this section, we will introduce the OFDM signal model to provide a math-
ematical perspective on OFDM systems. We will analyze the properties and
performance of these systems. Additionally, we will discuss methods for im-
proving OFDM systems and delve into the issues of ISI and ICI in OFDM
systems.
OFDM systems signal model: Figure 3.26 illustrates the OFDM system ar-
chitecture that we will discuss in this section. The distinction between Figures
3.26 and 3.17 lies in the representation of underlying signals and operations in
a matrix format. In this representation, the transmitted and received OFDM
signals are denoted as vectors, while the operations within the OFDM systems
are expressed as matrices. Additionally, uppercase letters are used to indicate
signals in the frequency domain, while lowercase letters represent signals in
the time domain. Throughout this section, we assume the utilization of a rect-
angular window function and disregard the influence of noise. Moreover, we
do not differentiate between sequential and parallel OFDM signals in this dis-
cussion. In the transmitter depicted in Figure 3.26, the data symbol vector is
represented as X, with dimensions of N × 1. This vector can be expressed as:

X = [X0, X1, · · · , XN−1]
T , (3.24)

where Xn represents the data symbol placed in the n subcarrier. After IDFT
operation, we obtain “useful” OFDM symbol vector s, being expressed as:

s = F−1 ·X = [s[0], s[1], · · · , s[N − 1]]T , (3.25)

In Eq. (3.25), F is a N ×N DFT matrix. Hence, the matrix F−1 represents
the IDFT operation. The mathematical expression of the DFT matrix is given
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FIGURE 3.27
Illustration of the OFDM received signals and ISI effect.

by:

F =


1 1 · · · 1
1 W 1·1 · · · W (N−1)·1

...
...

. . .
...

1 W 1·(N−1) · · · W (N−1)·(N−1)

 ,W = e−j 2π
N . (3.26)

By adding a CP with a length of Ng to the vector s, the resulting “completed”
OFDM symbol vector u, with dimensions of (N +Ng)× 1, can be expressed
as:

u = Θ · s = [s[N −Ng], · · · , s[N − 1], s[0], · · · , s[N − 1]]T , (3.27)

where

Θ =

[
ONg×(N−Ng) INg

IN

]
(N+Ng)×N

. (3.28)

To implement the CP operations, the most recent Ng symbols are redundantly
placed at the beginning of the signal to form the vector u. This vector rep-
resents the final transmitted signal from the transmitter. At the receiver, the
received signal is denoted as v and has dimensions of (N + Ng) × 1. Please
note that the actual length of the received signal may be longer than N +Ng

due to the effects of the channel. However, for the purpose of our discussions,
we will disregard this portion since we are employing CP. The received signal
v can be expressed as:

v = G · u+G(−) · u(−) = [v[0],v[1], · · · ,v[N +Ng − 1]]T (3.29)

where G is a channel matrix with the dimension of (N + Ng) × (N + Ng),
representing the channel impact on the transmitted vector. G(−) corresponds
to the channel matrix associated with the previously transmitted signal vector
u(−). Eq. (3.29) takes into account the influence of the previous OFDM signal
on the current transmitted signal, resulting in the presence of the ISI effect, as
illustrated in Figure 3.27. The region between the two dotted lines represents
u, and it can be observed that u(−) extends into this region due to channel
delay, thereby generating ISI effect. In the received signal v, each element
v[n] can be described as the convolution result of the transmitted signal and
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channel vector, being expressed as:

v[n] =

Lh−1∑
i=0

h[i]u[n− i] + h[i]u(−)[n+N +Ng − i], (3.30)

where Lh is the channel length. By expressing Eq. (3.30) in a matrix form, we
can obtain a channel matrix G as:

G =



h[0] 0 · · · 0 0 0 0

h[1] h[0]
. . .

... 0 0 0
... h[1]

. . . 0
... 0 0

h[Lh − 1]
...

. . . h[0] 0
... 0

0 h[Lh − 1]
... h[1] h[0] 0

...
...

...
. . .

... h[1]
. . . 0

h[0] 0 · · · h[Lh − 1] · · · h[1] h[0]


. (3.31)

From Eq. (3.31), it can be observed that G is a Toeplitz matrix with
dimensions (N +Ng)× (N +Ng), meaning that each column can be obtained
by shifting down one slot, reflecting the effect of channel delay. Following the
same concept, we can also obtain G(−), which is also a Toeplitz matrix with
dimensions (N +Ng)× (N +Ng), given by:

G =



0 · · · h[Lh − 1] · · · h[1]
...

...
...

. . .
...

0 · · · 0
... h[Lh − 1]

...
...

...
. . .

...
0 · · · 0 · · · 0


. (3.32)

One can also observe that G(−) consists of the lower right part of G and is
padded with zeros. This reflects the fact that ISI is caused by the end portion
of the previous OFDM symbol. At the receiver, by removing the CP portion
of v, we can obtain a “useful” received signal vector r with dimensions N ×1,
which can be expressed as:

r = Υ · v = Υ ·G · u+Υ ·G(−) · u(−)

= Υ ·G · u = [r[0], r[1], · · · , r[N − 1]]T ,
(3.33)

where
Υ = [ON×Ng

IN×N ] (3.34)

is applied to remove the CP operation. By examining the structure of G(−),
we can determine that the ISI effect caused by the previous OFDM symbol is
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FIGURE 3.28
Illustration of the OFDM received signals and ISI removal process.

limited to the first Lh − 1 elements of the current OFDM symbol. Therefore,
if Ng > Lh−1 is satisfied, the ISI effect can be fully addressed after removing
the cyclic prefix CP, as depicted in Figure 3.28. (Since the impact of the
previous signal does not extend beyond the CP region, indicated by the gray
region, the ISI effect can be eliminated after CP removal.) By applying the
DFT operation to the received signal r, we can obtain a frequency domain
signal block vector Y with dimensions of N × 1, which can be expressed as:

Y = F · r = F ·Υ ·G · u = F ·Υ ·G ·Θ · F−1 ·X
= [Y0, Y1, · · · , YN−1]

T ,
(3.35)

In Eq. (3.36), the effect of adding CP, removing CP, and channel can be
expressed as an equivalent channel as:

He = Υ ·G ·Θ

=



h[0] 0 0 0 h[Lh − 1] · · · h[1]

h[1] h[0] 0
... 0 0 h[2]

... h[1]
. . . 0

... 0
...

h[Lh − 1]
...

. . . h[0] 0
... h[Lh − 1]

0 h[Lh − 1]
... h[1] h[0] 0

...
...

...
. . .

...
. . .

. . . 0
0 0 · · · h[Lh − 1] h[Lh − 2] · · · h[0]


.

(3.36)

He is a N ×N circulant matrix, which can be diagonalized by a DFT matrix
as:

G =


H0 0 · · · 0

0 H1

... 0
...

...
. . .

...

0 0
... HN−1

 (3.37)

and the diagonal element {Hk} is the eigenvalues of He. By substituting Eqs.
(3.36) and (3.37) back into Eq. (3.35), we can derive a simplified model for
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FIGURE 3.29
Illustration of an OFDM transceiver and the corresponding equivalent matrix
signal model.

FIGURE 3.30
Illustration of an OFDM transceiver and the equalizer architecture.

the OFDM transceiver as:
Y = H ·X, (3.38)

where H is a diagonal matrix, indicating that the data symbols on different
subcarriers do not interfere with each other. This result aligns with Eq. (3.10).
Further analysis of Eq. (3.37) reveals that the diagonal elements of H corre-
spond to the frequency response of the channel, representing the channel’s
behavior at different subcarriers.

Hk = DFT{h[n]}, k = 0, · · · , N − 1. (3.39)

The architecture of the previously discussed OFDM systems is illustrated in
Figure 3.29.
OFDM systems equalization: In this section, we will discuss OFDM equal-
izers based on the aforementioned OFDM signal model. The objective of
OFDM equalizers is to recover the transmitted data symbol vector X from the
received signal vector Y, as depicted in Figure 3.30. In this context, D rep-
resents the matrix representation of the equalizer. When taking into account
the presence of noise, the received signal vector Y can be expressed as:

Y = H ·X+N, (3.40)

where N is the noise vector, following independent and identically distributed
(i.i.d.) complex Gaussian distribution with zero mean and variance σ2

n, and
has dimensions of N×1. After passing through the equalizer E, the estimated
data symbol vector can be obtained as:

X̂ = E ·X. (3.41)
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When it comes to equalizer designs, let’s begin by introducing the zero-forcing
(ZF) equalizer, which aims to completely eliminate the channel effect. The
mathematical expression of the ZF equalizer is the inverse matrix of the chan-
nel matrix H and can be represented as:

EZF = H−1. (3.42)

By applying the ZF equalizer, the data symbol estimate vector can be ex-
pressed as:

X̂ = H−1 ·Y = X+H−1 ·N
X̂k = H−1

k Yk = Xk +H−1
k Nk, k = 0, · · · , N − 1.

(3.43)

In Eq. (3.43), it can be observed that the ZF equalizer can be simplified to a
first-order equalizer when the equivalent channel matrix H is diagonal. After
equalization, the SNR of the data symbol on the k-th subcarrier is given by:

SNRZF,k = |Hk|2
σ2
X

σ2
n

, (3.44)

where σ2
X = E{|Xk|2} represents the power of the data symbol on the k-th

subcarrier. Unlike the ZF equalizer, the minimum mean square error (MMSE)
equalizer is designed to minimize the square error between the data symbol
vector and the data symbol estimate vector. Mathematically, it can be ex-
pressed as:5

EMS = argmin
E

E{||X−EY||2} = (HHH+
σ2
n

σ2
X

IN )−1HH , (3.45)

The key distinction between the ZF equalizer and the MMSE equalizer lies
in their considerations of the channel and noise effects. The MMSE equalizer
takes into account both the channel and noise effects simultaneously, and its
mathematical expression is given as:

X̂ = (XHX+
σ2
n

σ2
X

IN )−1HHY

X̂k =
σ2
X |Hk|2

σ2
X |Hk|2 + σ2

n

Xk +
σ2
X |Hk|2

σ2
XH

∗
k + σ2

n

Nk, k = 0, · · · , N − 1.

(3.46)

After the equalization process, the SNR of the data symbol on the k subcarrier
can be expressed as:

SNRMS,k = |Hk|2
σ2
X

σ2
n

. (3.47)

5Here, min represents the operation of minimizing the objective function, while argmin
indicates selecting the input of the function that results in the minimum value of the ob-
jective function.
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By comparing Eqs. (3.44) and (3.47), it becomes apparent that the SNR after
ZF equalization and MMSE equalization are equal. This finding contradicts
the common understanding that the MMSE equalizer outperforms the ZF
equalizer in terms of performance. The reason behind this phenomenon is the
absence of ISI during OFDM transmission. Consequently, the ZF equalizer
does not introduce any noise enhancement during the ISI cancellation process.
With this understanding, it is possible to simplify the equalization process by
adopting a ZF equalizer instead of an MMSE equalizer in OFDM systems.
OFDM systems enhancement: According to the signal model of the
OFDM transceiver presented earlier, we understand that each subcarrier forms
an independent transmission channel without mutual interference. Exploiting
this property, OFDM systems can enhance system performance by appro-
priately allocating transmit power to different subcarriers, maximizing the
overall system capacity. This can be formulated as the following optimization
problem:6

max
p0,p1,··· ,pN−1

N−1∑
k=0

log2(1 +
pk|Hk|2

σ2
n

)

subject to

N−1∑
k=0

pk ≤ P, pk ≥ 0, k = 0, · · · , N − 1,

(3.48)

where pk is the transmit power of kth subcarrier and P is the maximum
transmit power constraint. Using the Lagrange multiplier method, Eq. (3.48)
can be solved and the solution can be expressed as:7

pk =
1

λ
− σ2

n

|Hk|2
;

N−1∑
k=0

(
1

λ
− σ2

n

|Hk|2
)+ = P. (3.49)

The solution presented in Eq. (3.49) follows the principle of water-filling. In
this approach, the transmit power allocation to each subcarrier is determined
based on the inverse proportionality between σ2

n/|Hk|2 and the channel gain.
Specifically, subcarriers with better channel conditions are allocated higher
transmit power, while subcarriers with poorer channel conditions receive lower
transmit power or may even be abandoned. The analogy of a container with
an uneven bottom surface helps illustrate the concept. Imagine that the wa-
ter level represents the available transmit power, and the bottom surface of
the container corresponds to the channel gains. The height between the water
surface and the bottom surface indicates the power allocation for each subcar-
rier. With a higher bottom surface (weaker channel gain), the allocated power
will be smaller. If the bottom surface is higher than the water surface, no
transmit power will be allocated to that subcarrier, as shown in Figure 3.31.

6Please refer to ref. [84] for more details; The term max is an abbreviation for “maxi-
mize,” indicating the objective function seeks to achieve the maximum value.

7(x)+ = x if x > 0, (x)+ = 0 if x < 0.
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FIGURE 3.31
Illustration of the water-filling power allocation in OFDM systems.

This water-filling solution ensures that transmit power is efficiently allocated
across subcarriers based on their channel conditions, optimizing system ca-
pacity while adhering to the power constraint. The analogy provides a visual
representation of this power allocation process.
OFDM systems ISI and ICI issues: In the previous discussion, we assumed
the perfect case of the OFDM transceiver without considering the presence
of ISI and ICI effects. However, in practical OFDM systems, these effects can
arise due to various imperfections, such as insufficient CP length or carrier
frequency offset (CFO). Insufficient CP length results in both ISI and ICI
effects, while CFO primarily causes ICI effect. These effects will be the main
focus of this section. When the CP length is insufficient, we have the condition
Ng < Lh−1. The received signal in Eq. (3.35) can be revised using Eqs. (3.29)
and (3.33) as follows:

Y = F ·Υ ·G · u+ F ·Υ ·G(−) · u(−) +N. (3.50)

By substituting u and u(−) into Eq. (3.50), we can derive

Y = F ·Υ ·G ·Θ · F−1 ·X+ F ·Υ ·G(−) ·Θ · F−1 ·X(−) +N

= F ·He,cp · F−1 ·X+ F ·H(−)
e,cp · F−1 ·X(−) +N.

(3.51)

In Eq. (3.51), due to the insufficient CP length, the matrix He,cp is not
circular and the product F ·He,cp · F−1 is no longer a diagonal matrix. This
results in the appearance of the ICI effect. Additionally, the insufficient CP
length prevents OFDM receivers from fully eliminating the interference caused
by the previous OFDM symbol, leading to the presence of the ISI effect. By
rearranging Eq. (3.51), we obtain

Y = F · (He −HICI) · F−1 ·X+ F ·HISI · F−1 ·X(−) +N

= F ·He · F−1 ·X− F ·HICI · F−1 ·X+ F ·HISI · F−1 ·X(−) +N

= H ·X− F ·HICI · F−1 ·X+ F ·HISI · F−1 ·X(−) +N.
(3.52)
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FIGURE 3.32
Illustration of the time-domain equalizer designs.

In Eq. (3.52), HICI represents the channel matrix for ICI effect, which can be
expressed as:

HICI =



0 · · · h[Lh − 1] h[Lh − 2] · · · h[Ng + 1] 0 · · · 0
0 · · · 0 h[Lh − 1] · · · h[Ng + 2] 0 · · · 0
... · · ·

...
...

. . . · · · · · · · · · · · ·
0 · · · 0 0 · · · h[Lh − 1] 0 · · · 0
... · · ·

...
...

...
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0


,

(3.53)
In Eq. (3.53), HISI represents the channel matrix for the ISI effect, which can
be expressed as:

HISI =



0 · · · 0 h[Lh − 1] h[Lh − 2] · · · h[Ng + 1]
0 · · · 0 0 h[Lh − 1] · · · h[Ng + 2]
... · · ·

...
...

...
. . .

...
0 · · · 0 0 0 0 h[Lh − 1]
... · · ·

...
...

...
...

...
0 · · · 0 0 0 · · · 0


. (3.54)

By substituting Eqs. (3.53) and (3.54) into Eq. (3.55), we can obtain the
components in different subcarrier as:

Yk = HkXk−
N−1∑
k′=0

[FHICIF
−1]k+1,k′+1Xk′+

N−1∑
k′=0

[FHISIF
−1]k+1,k′+1X

(−)

k′ +Nk,

(3.55)
where [·]i,j stands for the i row j column value. In order to mitigate the
interference caused by insufficient CP length, a solution is to design a spe-
cial time-domain equalizer that reduces the effective channel length at the
receiver, as depicted in Figure 3.32. It’s important to note that this time-
domain equalizer is specifically designed to address the insufficient CP length
problem, whereas OFDM systems typically employ frequency-domain equal-
izers to remove channel effects. The architecture of the time-domain equalizer
is illustrated in Figure 3.33(a). Prior to the DFT operation at the receiver,
the received signal undergoes filtering by a finite impulse response (FIR) fil-
ter represented by w[n]. This filter is responsible for reducing the effective
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FIGURE 3.33
(a) Illustration of the architecture of the time-domain equalizer. (b) Illustra-
tion of the equivalent architecture of the time-domain equalizer.

channel length. Consequently, the effective channel b[n] has a length shorter
than the CP length, as depicted in Figure 3.33(b). It should be noted that the
time-domain equalizer introduces an additional signal delay denoted as d. In
other words, the time-domain equalizer reduces the effective channel length
at the expense of increased signal delay.

In order to address the insufficient CP length issue, an alternative ap-
proach is to directly mitigate the ISI and ICI effects in the frequency domain.
One commonly used method is to employ a linear equalizer, such as a ZF
equalizer or a MMSE equalizer, to eliminate the ICI effect. Additionally, a
decision feedback equalizer can be utilized to remove the ISI effect. By further
analyzing Eq. (3.51), we can derive the following mathematical model:

Y = F ·He,cp · F−1 ·X+ F ·H(−)
e,cp · F−1 ·X(−) +N

= Qe,cp ·X+Q(−)
e,cp ·X(−) +N.

(3.56)

In the equalizer design, we initially employ a decision feedback equalizer to
mitigate the ISI effect. The mathematical expression for the DFE can be given
as follows:

YISI-free = Y −Q(−)
e,cp ·X(−) = Qe,cp ·X+N. (3.57)

After mitigating the ISI effect using the decision feedback equalizer, we can
further employ a linear equalizer to eliminate the ICI effect and recover the
transmitted data symbol. The mathematical expression for the data symbol
estimate using the MMSE equalizer can be given as follows:

X̂ = EMSY
ISI-free = (QH

e,cpQe,cp +
σ2
n

σ2
X

IN )−1QH
e,cpY

ISI-free. (3.58)



80 OFDM Principles

FIGURE 3.34
Illustration of the frequency-domain equalizer designs.

FIGURE 3.35
Illustration of the CFO effect and consequent ICI effect. (a) Without ICI
effect. (b) With ICI effect.

Finally, we can utilize the decision result to restore the transmitted data
symbol, as shown in Figure 3.34.

The ICI effect in OFDM systems can also be caused by a CFO, which
arises due to a frequency mismatch between the oscillators of the transmitter
and receiver. In the absence of CFO, the DFT frequency sample points in the
receiver align precisely with the peak frequencies of the subcarriers, result-
ing in no ICI effect, as illustrated in Figure 3.35(a). However, when CFO is
present, the shift in the DFT frequency sample points at the receiver leads to
mutual interference among the subcarriers, causing the ICI effect, as depicted
in Figure 3.35(b). The CFO can be quantified as the product of the frequency
spacing between subcarriers, denoted as ∆f , and a coefficient α. Thus, the
CFO can be expressed mathematically as:

foffset = α∆f = k0∆f + ϵ∆f, |ϵ| ≤ 0.5. (3.59)

In Eq. (3.59), the CFO coefficient α can be separated into two parts: an integer
component k0 and a decimal component ϵ. When k0 ̸= 0, the receiver encoun-
ters the issue of incorrect data symbol ordering, as depicted in Figure 3.36. For
instance, when k0 = 1, the original data symbol order of 0−1−2−3 becomes
1− 2− 3− 4, where symbol 4 is unknown, leading to incorrect demodulation
results that cannot be utilized. In the case where k0 = 0 but ϵ ̸= 0, which
is the more common scenario in OFDM systems, the receiver experiences the
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FIGURE 3.36
Illustration of the CFO effect caused by integer CFO.

FIGURE 3.37
Illustration of the CFO effect caused by decimal CFO.

ICI effect and a degradation in symbol reception gain, as illustrated in Figure
3.37. In this figure, the dotted lines represent the sampling points with lower
DFT reception gain compared to the solid line (which represents the absence
of CFO effect). Additionally, the reception phase is also influenced and sub-
ject to interference from other subcarriers. Generally, OFDM systems rarely
encounter integer CFO, and mechanisms are in place to detect and correct it
promptly. As a result, existing literature focuses more on the effects of decimal
CFO cases. Considering the CFO effect, the received signal can be expressed
as:

v[n] = ej2πfoffset
nT
N (u[n] ∗ h[n]) + n[n]. (3.60)

Using similar derivation in this section,8 we can obtain the OFDM received
signal block vector in frequency-domain as:

Y = F ·Φf ·Υ ·G ·Θ · F−1 ·X+N = F ·He, cfo · F−1 ·X+N, (3.61)

8Assuming CP length is sufficient.
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where

Φf =


1 0

ej2πfoffset
T
N

. . .

0 ej2πfoffset
(N−1)T

N

 . (3.62)

In Eq. (3.61), we introduce Φf to describe the CFO effect. The presence of
Φf causes He, cfo to deviate from a circular matrix, leading to the occurrence
of the ICI effect. To mitigate the impact of the CFO, a common approach
is to estimate and compensate for the CFO effect prior to performing DFT
operations. This can be expressed as:

Y = F · Φ̂
−1

f︸︷︷︸
CFO compensation

·Φf ·Υ ·G ·Θ · F−1 ·X+N. (3.63)

There are two classic methods for estimating the CFO effect in order to facil-
itate subsequent compensation. Data-driven approaches utilize training sym-
bols or pilot symbols to estimate CFO, providing precise estimation results but
compromising with the extra signal overheads. Non-data-driven approaches
only consider the correlation between CP and data symbol to conduct CFO
estimation.9

OFDM systems channel estimation: Existing communication systems
commonly employ coherent detection for channel estimation, which requires
the receiver to have knowledge of the channel information in order to cor-
rectly detect the transmitted symbols. In this section, we will provide a brief
introduction to the existing methods for channel estimation in OFDM sys-
tems. The general approach is to use training symbols or pilot symbols to
estimate the channels in either the time-domain or frequency-domain. The
choice of using training symbols or pilot symbols depends on the precision
requirements of the communication system, as they incur different overheads.
Training symbols are transmitted on all subcarriers in specific timeslots prior
to transmitting data symbols. These training symbols provide the receiver
with the necessary channel information to detect the subsequent data sym-
bols. On the other hand, pilot symbols are training signals that are placed on
specific subcarriers and share the bandwidth with data symbols. The place-
ment of training symbols and pilot symbols is illustrated in Figure 3.38. While
training symbols generally result in more accurate channel estimation com-
pared to pilot symbols, they also occupy more subcarriers and therefore, incur
larger overhead. As a result, OFDM systems need to strike a balance between
using training symbols and pilot symbols. Typically, during the initial stage
or asynchronous transmission, OFDM systems tend to utilize training sym-
bols to achieve accurate transmission settings. However, during the stable
transmission stage, pilot symbols are employed to reduce system overhead.

9Please refer to refs. [85, 86] for more details.
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FIGURE 3.38
Illustration of the training symbols and data symbols.

In Eq. (3.40), the received signal block vector on different subcarriers can be
expressed as:

Yk = HkXk +Nk, k = 0, · · · , N − 1. (3.64)

In the period of training symbols transmission, since the transmitted symbols
Xk are known at the receiver, a straightforward channel estimation result can
be obtained as follows:

Ĥk = YkX
−1
k , k = 0, · · · , N − 1. (3.65)

The channel estimation based on training symbols can also be carried out in
the time-domain. Initially, the time-domain channel response h[n] is estimated,
which enables the subsequent calculation of the corresponding frequency-
domain channel estimates. By combining Eqs. (3.27), (3.31), and (3.33), the
received signals can be expressed as:

r = Υ ·G ·Θ · s+ n = Hes+ n = Sh+ n, (3.66)

where S, h, and n is defined as:

S =


s[0] s[N − 1] · · · s[N − Lh + 1]
s[1] s[0] · · · s[N − Lh + 2]
...

...
...

...
s[N − 1] s[N − 2] · · · s[N − Lh]

 .
h = [h[0], h[1], · · · , h[Lh − 1]]T

n = [n[0], n[1], · · · , n[Lh − 1]]T

(3.67)

The main concept behind Eq. (3.66) is to interchange the roles of the channel
matrix and symbol vector, transforming them into a symbol matrix and a
channel vector, respectively. This transformation allows the straightforward
channel estimation result to be expressed as the least squares solution, given
by:

ĥ = (SHS)−1SHr = h+ (SHS)−1SHn. (3.68)
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FIGURE 3.39
Illustration of the block-type pilot symbols.

FIGURE 3.40
Illustration of the comb-type pilot symbols.

Finally, frequency-domain channel response estimates can be obtained by per-
forming N -points DFT operations on ĥ, resulting in the expression

Ĥk = DFT{ĥ[n]}, k = 0, · · · , N − 1. (3.69)

In cases where the subcarrier spacing is smaller than the channel’s coherent
bandwidth10, the fading characteristics of adjacent subcarriers are likely to be
similar. This similarity allows OFDM systems to perform channel estimation
with reduced overhead. Channel estimation based on pilot symbols involves
placing known pilot symbols at specific locations to estimate their channel
response. Interpolation or other methods can then be employed to infer the
channel response of non-pilot symbols. There are several common methods
for placing pilot symbols, including block type, comb type, mixed type, and
scatter type. The block-type pilot symbols, illustrated in Figure 3.39, involve
placing pilot symbols on all subcarriers with the same time-interval spacing.
This enables accurate estimation of channel variations in the time domain.
However, it does not handle frequency-domain channel variations well, mak-
ing block-type pilot symbols more suitable for slow fading channels. On the
other hand, comb-type pilot symbols, depicted in Figure 3.40, are the opposite
of block-type pilot symbols. They place pilot symbols on all time-slots with

10The idea of coherent bandwidth can be found in Chapter 2.
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FIGURE 3.41
Illustration of the mixed-type pilot symbols.

FIGURE 3.42
Illustration of the scatter-type pilot symbols.

the same subcarrier, accurately capturing time-domain channel variations but
exhibiting limitations in handling frequency-domain channel variations. Con-
sequently, comb-type pilot symbols are better suited for flat fading channels.
Mixed type pilot symbols combine characteristics of both block and comb
types, as shown in Figure 3.41. By extensively placing pilot symbols in both
time and frequency domains, they enable accurate estimation of channel be-
haviors in both domains. However, this approach also incurs higher system
overhead. Scatter-type pilot symbols distribute pilot symbols simultaneously
in the time and frequency domains, as shown in Figure 3.42, aiming to strike
a better balance between system overhead and channel behavior estimation
in both domains.
Single-carrier transmission technique based on cyclic prefix: OFDM
systems offer excellent transmission efficiency and ease of implementation.
However, they suffer from the high PAPR problem, which limits the use of
low-power transceivers. To address this issue, a single-carrier transmission
technique based on the cyclic prefix has been developed as an extension of
OFDM systems. This technique inherits the advantages of OFDM systems
while mitigating the PAPR problem. The single-carrier transmission tech-
nique based on the cyclic prefix incorporates the cyclic prefix mechanism and
frequency-domain equalization to achieve similar benefits as OFDM systems.
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FIGURE 3.43
Illustration of the SC-FDE architecture based on CP.

By adopting a single-carrier approach, the PAPR problem is significantly re-
duced compared to traditional OFDM systems. This technique often employs
a single-carrier frequency-domain equalizer (SC-FDE), as depicted in Fig-
ure 3.43. In this technique, the transmit data symbol s[n] of length N is
transmitted after the addition of the cyclic prefix. At the receiver, the re-
ceived signal first removes the cyclic prefix. Then, DFT operations are applied
to obtain the frequency-domain signals for channel equalization. The equal-
ized frequency-domain signal is then transformed back into the time-domain
for symbol detection. With the introduction of the cyclic prefix mechanism,
the received signals after removing the cyclic prefix can be expressed as the
convolution product of the transmitted signal and the channel:

r[n] = s[n]⊙N h[n] + n[n]. (3.70)

After performing the DFT operations, we obtain

Rk = DFT{r[n]} = SkHk, k = 0, · · · , N − 1, (3.71)

where
Sk = DFT{s[n]}, k = 0, · · · , N − 1. (3.72)

Eq. (3.72) is similar to the aforementioned OFDM model, where frequency-
domain equalization can be utilized to remove the channel effects. It can be
expressed as:

Ŝk = RkH
−1
k , k = 0, · · · , N − 1. (3.73)

Finally, the IDFT operations will be utilized to recover the time-domain sym-
bol estimates from the frequency-domain signal after equalization. This can
be expressed as:

ŝ[n] = IDFT{Ŝk}, n = 0, · · · , N − 1. (3.74)

The architecture of SC-FDE is very similar to that of OFDM, as it also involves
the use of a cyclic prefix, DFT/IDFT operations, and a frequency-domain
equalizer. As a result, the complexity and performance of these two systems
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FIGURE 3.44
Illustration of the SC-FDE architecture based on CP with the decision feed-
back mechanism.

are comparable. However, SC-FDE offers the advantage of lower PAPR. The
performance of SC-FDE can be further improved by introducing additional
decision feedback, as depicted in Figure 3.44. In the single-carrier decision
feedback equalizer (SC-DFE), time-domain feedback is utilized to mitigate
postcursor Intersymbol Interference (ISI), while frequency-domain feedback is
employed to eliminate precursor ISI. The output signal of the decision feedback
equalizer, denoted as z[n] in Figure 3.44, can be expressed as:

z[n] =
1

N

N−1∑
k=0

WkRke
j2π kn

N −
Kb∑
l=1

f∗l ŝ[n− l], (3.75)

where Wk is the equalization coefficient of k subcarrier, fl is the coefficient
of decision feedback filter, and Kb is the order of the decision feedback filter.
Considering the utilization of the MMSE rule to determine Wk and fl, we can
express it as:

min
Wk,fl

E{|z[n]− s[n]|2} ≡ 1

N

N−1∑
k=0

|WkHk − Fk|2 +
σ2
n

N

N−1∑
k=0

|Wk|2, (3.76)

where

Fk = 1 +

Kb∑
l=1

f∗l e
−j2π kl

N , k = 0, · · · , N − 1. (3.77)

and σ2
n stands for the noise power. Assuming that {fl} is given, the frequency-

domain equalization coefficient based on MMSE criterion can be expressed as:

Wk =
H∗

kFk

σ2
n + |Hk|2

. (3.78)

By substituting Eq. (3.78) into Eq. (3.76), we can formulate the MMSE opti-
mization equation for {Fk} as:

min
Fk

σ2
n

N

N−1∑
k=0

|Fk|2

σ2
n + |Hk|2

. (3.79)
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FIGURE 3.45
Illustration of the relationship between SC-FDE and OFDM systems.

The optimal solution of the above optimization problem can be obtained by
adjusting fl.

11 It can be expressed as:

f = [f1, · · · , fKb
]T = V −1v, (3.80)

where
v = [v1, · · · , vKb

]T

V =


v0 v−1 · · · v1−Kb

v1 v0 · · · v2−Kb

...
...

...
...

vKb−1 vKb−2 · · · v0

 .

vl =
σ2
n

N

N−1∑
k=0

e−2π kl
N

σ2
n + |Hk|2

, l = 0, · · · ,Kb − 1.

(3.81)

Finally, we can substitute Eqs. (3.77) and (3.80) into Eq. (3.78) to obtain
the frequency-domain equalization coefficient. The main difference between
SC-FDE and OFDM systems lies in the position of the IDFT operations, as
illustrated in Figure 3.45. In OFDM systems, the IDFT operations are per-
formed in the transmitter to achieve multi-carrier transmission. On the other
hand, SC-FDE systems employ IDFT operations in the receiver to restore sym-
bols after frequency-domain equalization. By exploiting the similarity between
SC-FDE and OFDM systems, communication systems can perform OFDM
transmission in the uplink (e.g., from base stations) and SC-FDE reception in
the downlink (e.g., in mobile stations) without the need for additional DFT
or IDFT circuits. For example, in 4G mobile communication systems, base
stations utilize OFDM systems for signal transmission in the uplink, while
mobile stations employ single-carrier transmission in the downlink, as shown
in Figure 3.46. This configuration offers two main advantages: (1) Complex
computations are concentrated in the base stations, resulting in computational
resource savings and reduced battery power consumption in mobile stations.

11Please refer to ref. [87] for more details.
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FIGURE 3.46
Illustration of the transceiver configuration strategy in mobile communication
systems.

FIGURE 3.47
Illustration of the resource allocation in TDMA, OFDM-TDMA, and OFDMA
systems.

(2) By utilizing single-carrier signals in mobile stations, the lower PAPR leads
to improved transmission efficiency and energy savings. It is worth noting
that in the 5G New Radio (NR) mobile communication system, the downlink
transmission also utilizes OFDMA due to the availability of high-performance
amplifiers for OFDMA transmission in most user equipment. However, in sce-
narios with challenging channel conditions, SC-FDMA may be employed to
further lower PAPR and achieve better transceiver efficiency.
OFDMA/SC-FDMA introduction: In the previous discussions, we fo-
cused on single-user systems for point-to-point transmission. However, both
OFDM systems and single-carrier systems can also support multi-user trans-
mission, enabling multiple access techniques such as OFDMA and SC-FDMA,
respectively. As shown in Figure 3.47, time division multiple access (TDMA)
is used to divide the time-domain resources into different timeslots, which
are then assigned to different users. OFDM-TDMA systems further assign all
OFDM subcarriers to a single user in each timeslot. OFDMA assigns different
sets of subcarriers to different users in each timeslot, combining the bene-
fits of TDMA and frequency division multiple access (FDMA) systems. The
flexibility of OFDMA allows for the allocation of time-domain and frequency-
domain resources to different users, as illustrated in Figure 3.48. By taking
advantage of selective fading in the channel across both time-domain and
frequency-domain, OFDMA systems can allocate appropriate resources to
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FIGURE 3.48
Illustration of the two-dimension resource allocation in OFDMA systems.

FIGURE 3.49
Illustration of the transmitter structure in OFDMA systems.

different users, thus improving overall system spectrum efficiency. This con-
cept is known as multi-user diversity. For example, if the channel response is
better for user 1 than user 2 in a particular timeslot and subcarrier, and vice
versa in another timeslot and subcarrier, the system can assign the favorable
resources to each user accordingly to enhance the overall system performance.
The architecture of OFDMA systems is similar to that of OFDM systems,
with the main difference being the mapping of data symbols from different
users to assigned subcarriers prior to the IDFT operations, as shown in Fig-
ure 3.49. Each user maps their data symbols to their assigned subcarriers out
of the total available subcarriers. After the DFT operations at the receiver,
the corresponding receiver extracts information from the assigned subcarriers
and performs equalization and detection to complete the reception. Similar
to OFDM systems, OFDMA systems also face PAPR issues. SC-FDMA is a
single-carrier multiple access technique based on OFDM systems, as depicted
in Figure 3.50. It shares similarities with OFDM systems, with the main differ-
ence being the additional DFT operation used to transform time-domain data
symbols to the frequency domain. Subsequently, the procedures for SC-FDMA
are the same as those for OFDMA systems, where frequency-domain symbols
from different users are placed in different subcarriers. The reason for em-
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FIGURE 3.50
Illustration of the transmitter structure in SC-FDMA systems.

FIGURE 3.51
Illustration of the subcarrier allocation in SC-FDMA systems.

ploying the extra DFT operation in SC-FDMA is to allow each time-domain
symbol to utilize the maximum bandwidth for transmission, leveraging the
single-carrier property. The subcarrier allocation in SC-FDMA can be either
distributed or localized, as illustrated in Figure 3.51. Distributed allocation
assigns frequency-domain symbols from the same user to non-contiguous sub-
carriers, while localized allocation assigns frequency-domain symbols from the
same user to contiguous subcarriers for data transmission.



4

MIMO Signal Processing in
Communication Systems

4.1 SU-MIMO Transceiver Designs

In wireless communication system designs, the degree of freedom is an im-
portant idea, referring to the effective resources, which can be utilized by
the systems for performance improvements, such as time, frequency, and spa-
tial domains. For example, the degree of freedom of a filter is the number
of coefficients, that can be adjusted independently. By adjusting those coeffi-
cients, the performance and signal processing properties in the time-domain
and frequency-domain can be designed accordingly. In the spatial domain,
a degree of freedom can be obtained by employing multi-antenna systems.
The degree of freedom of a multi-antenna system is the number of anten-
nas, that can be utilized independently. By adjusting the antenna weights,
multi-antenna systems can also adjust their performance and signal process-
ing properties in the time-domain and frequency-domain. In current wireless
communications, the multi-antenna technique is an effective solution to boost
system performance. The idea is to configure multiple antennas in the trans-
mitter and/or receiver so that signal transmission/reception can take place
in multiple spatial locations simultaneously. Due to the excellent performance
improvements brought by the multi-antenna technique, almost all advanced
wireless and mobile communication standards have included it in key technol-
ogy options. Multi-antenna systems need to work with corresponding signal
processing solutions to effectively utilize the available spatial degree of freedom
to improve communication system performance. Generally speaking, there are
two goals regarding multi-antenna signal processing solutions: (1) Improve
signal quality by strengthening signal quality or mitigating interference. (2)
Improve data rate by increasing system capacity. To achieve the above goals,
multi-antenna systems can utilize the spatial degree of freedom flexibly by per-
forming signal processing to obtain the following gains: array gain, diversity
gain, interference suppression gain, and spatial multiplexing gain. As shown
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FIGURE 4.1
Illustration of array gain.

FIGURE 4.2
Illustration of receiver diversity gain.

in Figure 4.1, array gain can be obtained by performing coherent processing1

to signals from multiple antennas to improve the signal-to-noise ratio (SNR).
Specifically, if channel information is available in the transmitter, the transmit
signals from different antennas can be processed in advance so that the re-
ceived signals are coherent and consequently with an improved SNR, as shown
in Figures 4.2 and 4.3. Utilizing the transmission/reception of multi-antenna
systems, the attenuation phenomenon of received signals in fading channels
can be mitigated, providing the so-called diversity gain.

Furthermore, by performing destructive interference in multi-antenna sys-
tems to mitigate interference signals, the system signal-to-interference-plus-
noise ratio (SINR) can also be improved, being the so-called interference sup-
pression gain, as shown in Figure 4.4. Finally, in the case that the transmitter
and receiver are both with multiple antennas, multiple data streams can be
transmitted simultaneously for the increased data rate, providing the spatial
multiplexing gain, as shown in Figure 4.5. By employing the above techniques,
multi-antenna signal processing can improve the coverage, link quality, trans-

1The coherent processing aims to adjust the phase of different signals to a consistent
one.
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FIGURE 4.3
Illustration of transmitter diversity gain.

FIGURE 4.4
Illustration of interference suppression gain.

mission rate, and system capacity (or spectrum efficiency) of communication
systems. In this chapter, we aim to introduce the above signal processing
techniques and the corresponding transceiver designs in different scenarios.
We will first cover a basic application of multi-antenna systems: beamform-
ing, then introduce the theoretical background of multi-antenna systems, in-
cluding diversity gain, channel capacity, and multiple-input multiple-output-
orthogonal frequency division multiplexing (MIMO-OFDM) system appli-
cation. Furthermore, we will discuss different multi-antenna signal process-
ing techniques, including transmitter/receiver diversity, space-time code, and
MIMO detection. Finally, in the case that channel information is available in
the transmitter, the MIMO precoding technique will be introduced to conclude
the content of this chapter.
Beamforming techniques: Being a basic application of multi-antenna sys-
tems, beamforming is a multi-antenna technique, utilizing an antenna array
to transmit or receive signals to achieve the goal of improving SNR or SINR to
consequently enhance communication performance or reliability. The beam-
forming technique can be employed in the transmitter or receiver. The idea of
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FIGURE 4.5
Illustration of spatial multiplexing gain.

FIGURE 4.6
Illustration of the receiver beamforming architecture.

receiver beamforming is to adjust the amplitude or phase of received signals
from different antennas to enable coherent superposition for improved SNR.
On the other hand, the idea of transmitter beamforming is also aiming to
adjust the amplitude or phase of transmitted signals to enhance the strength
of transmitted signals in the direction of the receiver. It is noteworthy that
the reciprocity exists between transmitter beamforming and receiver beam-
forming. In other words, in the same beamforming architecture, the spatial
response of the transmitted signal and received signal is the same. As a result,
the design of transmitter beamforming and receiver beamforming is similar.
The architecture of receiver beamforming is shown in Figure 4.6. Assuming
there are NR antennas in the antenna array of the receiver, the equivalent
baseband received signal can be expressed as:

y(t) =

NR∑
i=1

w∗
i xi(t) = wHx(t), (4.1)

where x(t) = [x1(t), x2(t), · · · , xNR
(t)]T ; w = [w1, w2, · · · , wNR

]T . xi(t) is the
received signal in ith antenna and wi is the weight in the antenna.2 Hence,

2Each weight is a complex-value number, presenting the amplitude and phase adjust-
ments to the baseband signals.
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FIGURE 4.7
Illustration of the uniform linear array.

x(t) is the received signal vector, and w is the weight vector. The weight vec-
tor is the key parameter of the beamformer so that designing weight vector
is equal to determining the properties of the beamformer. Next, we will in-
troduce three representative received beamforming designing methodologies:
matched beamforming, minimum variance distortionless response (MVDR)
beamforming,3 and minimum mean square error (MMSE) beamforming. As-
suming a uniform linear array (ULA) is adopted as shown in Figure 4.7. The
received signal vector can be expressed as:

x(t) = a(θ1)u(t) + i(t) + n(t), (4.2)

where a(θ) is the steering vector of the antenna array, θ1 is the direction of the
received signal, and u(t) is the received signal, i(t) is the interference signal
vector, and n(t) is the noise vector. As a result, the output signal from the
beamformer and the average power can be expressed as:

y(t) = wHx(t) = wHa(θ1)u(t) +wH i(t) +wHn(t), (4.3)

E{|y(t)|2} = E{|wHx(t)|2}
= wHRxxw

= E{|u(t)|2}wHa(θ1)a
H(θ1)w +wHRiiw + σ2

nw
Hw

(4.4)

where Rxx is the correlation matrix of the antenna array received signal, being
expressed as:

Rxx = E{x(t)xH(t)} = E{|u(t)|2}a(θ1)aH(θ1) +Rii + σ2
nINR

. (4.5)

In Eq. (4.5), Rii is the correlation matrix of interference signal, σ2
n is the

noise power. Since the noise in different antennas are independent, the noise
correlation matrix can be expressed as σ2

nINR
.4

The goal of matched beamforming is to maximize the SNR of the received
signal direction and the idea is similar to the commonly used matched fil-
ter in communication systems. The design of matched beamforming can be

3MVDR is the abbreviation of minimum variance distortionless response. Please refer to
ref. [88].

4In is the unit matrix with the dimension n× n.
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expressed as the constrained optimization problem below:

max
wMF

wH
MFa(θ0)a

H(θ0)wMF

subject to wH
MFwMF =

1

NR
,

(4.6)

where θ0 is the assumed direction of the received signal (look direction). In Eq.
(4.6), the goal is to maximize the received response to the θ0 direction while
fixing the received noise power. Hence, if θ0 is close to the real direction of
the received signal θ1

5, the matched beamforming design will maximize SNR
to achieve our goal. The solution can be obtained via the Cauchy inequality,
which can be expressed as:

wMF =
1

NR
a(θ0). (4.7)

The above result is similar to the matched filter. Specifically, the matched filter
adjusts its filter impulse response to match the received signal in time-domain
while matched beamforming designs its beamforming weight to match the
characteristic (steering vector) of the received signal in spatial-domain. When
matched beamforming is utilized in a ULA, the equivalent received signal can
be expressed as:

wMFx(t) =
1

NR

NR∑
i=1

xi(t)e
−j2π d

λc
(i−1)sinθ0 . (4.8)

One can notice that the result in Eq. (4.8) is also the Fourier transform result
of the antenna array received signal x(t). As a result, matched beamforming is
also called Fourier beamforming. Matched beamforming can also be utilized
in the transmitter, where θ0 presents the transmitting direction instead. In
the above discussions, one can notice that the goal of matched beamforming
is only to maximize the SNR of the look direction and fails to consider the
existence of interference. Hence, although matched beamforming can improve
received signal quality significantly in an interference-free environment, the
achieved performance may drop due to the existence of interference. Thus, we
further introduce MVDR beamforming and MMSE beamforming, which can
handle interference effectively.

The idea of MVDR beamforming is to minimize the total received power
while fixing the spatial response of the look direction as 1. Since the total
received signal actually includes the desired signal, interference signal, and
noise, minimizing the total received power while maintaining the strength of
the desired signal is equal to minimizing the power of interference and noise,

5In an ideal case, the look direction should be equal to the real direction. However, in
actual cases, there may be a slight mismatch between those two angles.
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providing effective interference suppression. The design of MVDR beamform-
ing can be formulated as the constraint optimization problem as:

min
wMV

wH
MVRxx(θ0)wMV

subject to wH
MVa(θ0) = 1.

(4.9)

The solution can be obtained via the Lagrange multiplier, which can be ex-
pressed as: {

∇wMV
wH

MVRxxwMV − λ∇wMV
[wH

MVa(θ0)− 1] = 0

wH
MVa(θ0) = 1

(4.10)

{
RxxwMV = λa(θ0)

wH
MVa(θ0) = 1

(4.11)

wMV =
1

aH(θ0)R
−1
xxa(θ0)

R−1
xxa(θ0). (4.12)

Since the design of wMV is related to the received signal, MVDR beamforming
is an adaptive signal processing technique by automatically adjusting wMVto
suppress the interference signal and noise. For example, in the case of larger
interference than noise, the MVDR beamformer will focus more on interference
suppression. On the other hand, in the case of larger noise than interference,
the MVDR beamformer will concentrate on noise suppression and devolve to
the matched filter. The main advantage of MVDR beamforming is the above
automatic adjusting mechanism. However, if there is a mismatch between the
angles of the look direction and the actual signal direction, the performance of
the MVDR beamformer will drop since the actual signal will be misidentified
as an interference signal and be suppressed consequently. Also, in the case that
the desired signal and interference signal is coherent,6 the performance of the
MVDR beamformer will also drop since destructive interference between the
desired signal and interference signal will be conducted to minimize the total
signal power.

The idea of MMSE beamforming is to minimize the mean square error
between desired signal u(t) and the actual received signal, expressed as:

min
wMS

E{|wH
MSx(t)− u(t)|2}. (4.13)

This is a typical MMSE problem with the solution as:

wMS = R−1
xx rxs; rxs = E{x(t)u∗1(t)}. (4.14)

The design of the MMSE beamformer does not require the direction of the
desired signal, and thus will not be impacted by the mismatch between the

6The definition of “coherent” here is that two signals are proportional to each other.
This will happen when signals arrive at the receiver via multi-path mirror reflections.
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lookup direction and the actual signal direction. However, the extra training
signal is required to obtain rxs, which will also increase the system over-
head. The goal of MMSE beamforming is to restore the desired signal as pre-
cisely as possible and utilize training signals to guide the beamforming design.
As a result, it can be performed appropriately no matter the faced environ-
ment, being the main difference between MVDR beamforming and MMSE
beamforming.

4.2 MIMO Principles

The most common performance indicators for evaluating communication sys-
tems are reliability and capacity. Reliability generally refers to the error rate
of transmission, and the factors that cause errors mainly come from channels,
interference, and noise effects. Capacity refers to the amount of effective data
transmission within a fixed time period, or the effective data transmission
rate. Similar to reliability, the main factors that limit the capacity of com-
munication systems also come from channels, interference, and noise effects.
For example, in a quiet environment, the two parties can speak at a faster
speed without difficulty or misunderstanding, indicating that the system has
higher reliability and capacity. However, if the environment becomes noisy,
the two parties must slow down their speaking speed, otherwise, they may
misunderstand each other. From a communication perspective, the reliability
and capacity of the system decrease at this time. The main goal of designing
communication systems is to overcome the effects of channels, interference,
and noise in the environment to improve the system’s reliability and capac-
ity. In communication systems, reliability is generally expressed as an error
rate. The commonly used methods to represent error rate are symbol error
rate (SER) and bit error rate (BER). The former refers to the probability of
symbol errors, while the latter refers to the probability of transmitting bit
errors. For example, if the transmitter carries 100 bits on 25 16-QAM sym-
bols for transmission and 2 symbols have errors at the receiver, resulting in
3 bit errors after conversion, then the symbol error rate is 8% (2/25), and
the bit error rate is 3% (3/100). The error rate of a communication system
is generally represented by SNR, which represents the environmental effects
and takes into account the transmission power, noise intensity, and channel
effects. Interference is often included in noise owing to the fact that, from the
receiver’s perspective, the effects of interference and noise are basically sim-
ilar. Therefore, the method of evaluating the performance of a transmission
and reception link is to calculate the variation curve of its error rate under
different SNR.
Reliability of MIMO communication systems: In Chapter 2, it was men-
tioned that the channel effects can mainly be divided into path loss, shadow
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fading, and multipath fading. The former two represent the impact of the
transmission and reception locations on the channel. Once the positions of
the transmitter and receiver are fixed, the path loss and shadow fading be-
come fixed as well. Under the influence of the channel effects, the definition
of SNR needs to take into account the large-scale average effects of path loss
and shadow fading, expressed as:

SNR =
PtGGLGSF

σ2
n

, (4.15)

where Pt represents transmission power, and GGL and GSF respectively rep-
resent the average gain of path loss and shadowing fading. At this point, the
channel effect is characterized by small-scale multipath fading. Generally, the
value of multipath fading is random, and it is composed of many indepen-
dent paths, each with the same statistical characteristics. In this case, assum-
ing slow and flat fading, the multipath fading effect can be represented as a
Gaussian random variable based on the central limit theorem, as expressed
as:

y(t) = hx(t) + n(t), (4.16)

where y(t) is the received signal, x(t) is the transmitted signal, and h is the
complex Gaussian random variable representing multipath fading, with its
amplitude following the Rayleigh distribution. Therefore, Eq. (4.16) is also
known as the Rayleigh fading signal model. In this model, there are mainly
two reasons for receiving errors: the channel is too poor, or the SNR is too
low. When the SNR is relatively high, the channel is the main cause of errors,
and the relationship between error rate pe and SNR is given by Eq. (4.17).

pe ∝
1

SNR
. (4.17)

As shown in Eq. (4.17), on a logarithmic scale, the error rate curve against
SNR approaches a straight line with a slope of −1 in the high SNR region.
This indicates that the error rate decreases slowly as SNR increases, which is
a highly undesirable situation. The most effective way to improve this phe-
nomenon is to use multiple-antenna techniques. If one or both of the trans-
mission and reception ends have multiple antennas, and the antenna spacing
is large enough, then any link between any pair of transmitting and receiving
antennas can be regarded as an independent channel. For example, if there
are four antennas at the transmitting end and two antennas at the receiving
end, there are eight independent channels.7 If a communication system uses
d independent channels to transmit the same signal, the relationship between
error rate and SNR in the high SNR region becomes:

pe ∝
1

SNRd
. (4.18)

7This is an ideal assumption. In reality, the number of effective independent channels is
usually smaller than the product of the number of transmitting and receiving antennas.
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FIGURE 4.8
Illustration of the SISO system and corresponding channel capacity.

FIGURE 4.9
Illustration of the MIMO system and corresponding channel capacity.

In other words, in the logarithmic scale, the error rate versus SNR curve tends
to a straight line with a slope of −d in the high SNR region, indicating that a
larger value of d can provide a greater improvement in system reliability. The
parameter d in Eq. (4.19) represents the diversity gain,8 which refers to the
effective number of independent channels transmitting the same signal. The
maximum diversity gain in a multi-antenna system is equal to the product of
the number of transmitting and receiving antennas.
Multi-antenna communication system capacity: In communication sys-
tems, capacity is another important performance metric, referring to the
amount of effective data transmitted per unit time, with units of bits per
second (bps). Capacity is proportional to the system bandwidth, and is there-
fore often expressed as the amount of data transmitted per second per hertz
of bandwidth, with units of bits per second per hertz (bps/Hz), similar to
the concept of spectrum efficiency. In this section, we will discuss the impact
of multiple antenna techniques on channel capacity. First, let us consider the
simplest single-input single-output (SISO) system, as shown in Figure 4.8,
where the transmit–receive relationship can be represented by Eq. (4.16). Ac-
cording to Shannon’s formula, the channel capacity of a SISO system can be
expressed as:

C = log2(1 + |h|2γ)(bps/Hz) ; γ =
P

σ2
n

, (4.19)

where P is the transmitted power and γ is SNR. Next, let us consider a MIMO
system with NT transmit antennas and NR receive antennas, as shown in
Figure 4.9. When the channel is slow and experiences flat fading, the signal
model of the system can be represented as:

8In different literature, d is also referred to as the diversity order, but this book adopts
the term diversity gain for consistency.
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...

yNR
(t)

 =

 h11 · · · h1NT

...
. . .

...
hNR1 · · · hNRNT


 x1(t)

...
xNR

(t)

+

 n1(t)
...

nNR
(t)

 , (4.20)

leading to
y(t) = Hx(t) + n(t), (4.21)

where H is the channel matrix. Then, the capacity of the MIMO system9 can
be expressed as:

C = log2[det(INR
+HRxxH

HR−1
nn)](bps/Hz). (4.22)

Rxx = E{x(t)xH(t)} ; Rnn = E{n(t)nH(t)}. (4.23)

In Eqs. (4.22) and (4.23), det(·) denotes the determinant operation and Rxx

and Rnn represent the correlation matrices of the transmitted signal and
noise, respectively. To ensure fairness, it is generally assumed that the total
transmission power of the MIMO system is the same as that of the SISO
system, both of which are P . Therefore, it is required that Rxx satisfies the
following equation:

tr(Rxx) = P. (4.24)

That is to say, the total transmission power of theNT transmission antennas of
the system is equal to P . Figure 4.9 shows the variation in capacity from SISO
to MIMO systems, which although different, still exhibit similar structures.

The above discussion is on the channel capacity given the channel H.
In reality, H is random, and therefore the channel capacity is also random.
Therefore, in general analysis, the expected value of H is taken into account
as

C = E{log2[det(INR +HRxxH
HR−1

nn)]}(bps/Hz). (4.25)

If the transmitted signals and noises from different antennas are statistically
independent and follow the same probability distribution (i.e., independent,
identically distributed, i.i.d.), then Rxx and Rnn can be expressed as follows:

Rxx =
P

NT
IT ; Rnn = σ2

nIR. (4.26)

Then, Eq. (4.26) can be simplified to Eq. (4.28):10

C = E{log2[det(INR +
γ

NT
HHH)]}

= E{log2[det(INR +
γ

NT
HHH)]}(bps/Hz) ; γ =

P

σ2
n

.
(4.27)

9Please refer to refs. [89, 90] for more details.
10The property det(I+AB) = det(I+BA) is utilized in this simplifying process.
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By assuming NR ≤ NT, we perform an eigenvalue decomposition (EVD) on
HHH in Eq. (4.27) to obtain UΛUH , and simplifying it yields to

C = E{log2[det(INR
+

γ

NT
UΛUH)]}

= E{log2[det(UUH) +
γ

NT
UΛUH)]}(bps/Hz)

= E{log2[det(INR
+

γ

NT
Λ)]}

= E

{
log2

[
NR∏
i=1

(1 +
γ

NT
λi)

]}

=

NR∑
i=1

E{log2[(1 +
γ

NT
λi)]}(bps/Hz).

(4.28)

In Eq. (4.28), λ1, · · · , λNR are the eigenvalues of HHH, and the derivation
quotes the equation UUH = INR . Using this result, one can notice that the
channel capacity of the MIMO system can be regarded as the sum of NR

sets of parallel SISO channel capacities.11 Furthermore, according to Jensen’s
inequality, when the norm of H is fixed, the maximum value of Eq. (4.28)
occurs when λ1 = λ2 = · · · = λNR . When NR is sufficiently large and the
elements in the channel H are independent and identically distributed (i.i.d.),
it can be proven that λ1, · · · , λNR

are approximately equal to NTE{|h11|2}.
Then we assume NR ≥ NT, we also perform EVD on HHH in Eq. (4.27) and
conduct similar derivation. A similar conclusion can be obtained: when NR is
sufficiently large and the elements in the channel H are i.i.d., it can be proven
that λ1, · · · , λNT are approximately equal to NRE{|h11|2}. In summary, when
the channel H is full rank and its elements tend to be i.i.d., the following
approximate expression for the maximum channel capacity can be obtained:

C = NRlog2(1 + E{|h11|2}γ) (bps/Hz) NR ≤ NT

= NTlog2(1 +
NR

NT
E{|h11|2}γ) (bps/Hz) NR ≥ NT.

(4.29)

Eq. (4.29) has several important implications: (1) The capacity of MIMO
channels increases linearly with the smaller number of antennas at the trans-
mitter or receiver, and this increase is called the multiplexing gain, which is
min{NR, NT} in Eq. (4.29). (2) For the effect of multiplexing gain to be sig-
nificant, H must be full rank and its elements must approach i.i.d. This con-
dition’s physical significance is that the spatial channel must have sufficient
rich multipath. From the above discussion, it can be inferred that multipath
fading, which is considered a negative factor in traditional communication
systems, instead becomes the driving force of channel capacity in MIMO sys-
tems. The rich multipath makes the MIMO channel equivalent to multiple

11In the case that H is not full rank, a portion of eigenvalues of HHH will be zero. As a
result, the number of parallel SISO channels will be less than NR.
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independent SISO sub-channels, and MIMO systems can use this effect to
transmit multiple data streams at the same time and frequency, increasing
the data transmission rate. The multiplexing gain effect of MIMO systems
is undoubtedly one of the greatest highlights in the wireless communication
field in the past 20 years. It can increase system capacity without increasing
bandwidth or transmission power, which is particularly attractive for com-
mercial mobile communication with extremely high spectrum costs. MIMO
technology has become a necessary item in current mainstream wireless and
mobile communication standards.

The above discussion is based on the assumption that the transmitter has
no knowledge of the channel H. Therefore, in Eqs. (4.28) and (4.29), it is
assumed that the transmitted signals from each antenna and each subchannel
have the same power. However, when the transmitter has knowledge of the
channel H, the optimal strategy for power allocation is no longer to evenly
distribute the power. In this case, the channel capacity should be expressed
as follows:

C = log2[det(INT
+

1

σ2
n

RxxH
HH)] =

Q∑
i=1

log2(1 +
Pi

σ2
n

λi)(bps/Hz), (4.30)

where Pi is the power allocated to the ith subchannel, λi is the ith eigenvalue
of HHH, and Q is the rank of H subject to the total power constraint at the
transmitting end:

Q∑
i=1

Pi = P. (4.31)

The optimal set of Pi values that maximizes the capacity in Eq. (4.30) can be
obtained through a water-filling procedure, as given below:

Pi = (λ−1 − λ−1
i )+, i = 1, · · · , Q. (4.32)

and λ is determined by:12

Q∑
i=1

Pi =

Q∑
i=1

(λ−1 − λ−1
i )+ = P. (4.33)

Given the EVD as: 1

σ2
n

HHH = VΛVH , (4.34)

the covariance matrix of the transmitted signal can be constructed by the
following equation:

Rxx = VQPVH
Q = VQdiag([P1, · · · , PQ]

T )VH
Q . (4.35)

In Eq. (4.35),VQ is the matrix formed by the firstQ rows ofV,P is aQ×Q
diagonal matrix with diagonal elements {P1, · · · , PQ}. Eq. (4.35) suggests a

12(x)+ = x if x ≥ 0, (x)+ = 0 if x ≤ 0.
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FIGURE 4.10
Illustration of the water-filling method for transmit power allocation.

FIGURE 4.11
Illustration of the uncorrelated high-rank model.

signal generation procedure for transmission as follows: (1) Generate a set
of independent signals with power levels P1, · · · , PQ; (2) Multiply this set
of signals by VQ and transmit them from each transmitting antenna. The
power allocation scheme expressed in Eq. (4.32) can be illustrated using the
water-filling analogy, as shown in Figure 4.10: imagine pouring water into a
bottom-up uneven pool, where the total amount of water represents the total
transmission power, and different heights in the pool represent different sub-
channels. The lower heights correspond to poorer sub-channels. When all the
water has been poured into the pool, the water level in each area represents the
power allocated to the corresponding sub-channel. With this allocation rule,
better sub-channels are allocated more power, while some extremely poor sub-
channels may not receive any power, such as the most protruding sub-channel
in Figure 4.10. Therefore, the spirit of the water-filling method can be said to
be “the rich get richer, and the poor get poorer.”
MIMO channel models: We conclude this section with a brief classifica-
tion of MIMO channel models based on the multipath structure. First, the
uncorrelated high-rank (UHR) model is shown in Figure 4.11, which assumes



106 MIMO Signal Processing in Communication Systems

FIGURE 4.12
Illustration of the uncorrelated low-rank model.

FIGURE 4.13
Illustration of the correlated low-rank model.

that the overall multipath structure is rich, and the elements of the channel
matrix H are i.i.d. CN (0, 1) complex Gaussian random variables. In this case,
H has the maximum rank, and the system can achieve the maximum diversity
gain NRNT and the maximum multiplexing gain min{NR, NT}. Second, the
uncorrelated low-rank (ULR) model is shown in Figure 4.12, which assumes
that the local multipath structure is rich around the transmitting and receiv-
ing ends, but the multipath structure between the two ends is sparse. The
channel matrix H can be expressed as Eq. (4.36), where it has i.i.d. chan-
nel vector structure hT and hR around the transmitting and receiving ends,
which are CN (0, I) multivariate complex Gaussian distributions, but the line-
of-sight (LoS) model is assumed between the two ends with only one path.
In this case, the rank of H is 1, and the system’s diversity gain is equal to
min{NR, NT} and the multiplexing gain is 1.

H = hRh
H
T , hR ∼ CN (0, INR);hT ∼ CN (0, INT). (4.36)

Finally, the correlated low-rank (CLR) model, as shown in Figure 4.13, as-
sumes that the local multipath structures around the transmitter and receiver,
as well as between them, are sparse. The channel matrixH can be expressed as
Eq. (4.37), where uT and uR are the spatial feature vectors of the transmitter
and receiver, respectively, and hT and hR are the fading factors at both ends,
with the overall channel being a simple LoS model. In this case, the rank of
H is 1, and both the diversity gain and the multiplexing gain of the system
are equal to 1, providing only beamforming gain.

H = hRh
∗
TuRu

H
T , hR ∼ CN (0, 1);hT ∼ CN (0, 1). (4.37)
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FIGURE 4.14
Illustration of the MIMO-OFDM transmitter architecture.

4.3 MIMO-OFDM System Model

Chapter 3 introduced the principles and advantages of the OFDM system,
while this chapter presents the principles and advantages of MIMO. The
combination of these two technologies results in the MIMO-OFDM system.
MIMO-OFDM has become the mainstream transmission technology in ad-
vanced wireless and mobile communication systems. The primary reason for
this is that OFDM exhibits a narrowband subcarrier structure, where each
subcarrier experiences flat fading. In contrast, MIMO technology is relatively
easier to analyze and implement under the assumption of flat fading. MIMO-
OFDM can be regarded as a multi-antenna version of OFDM, applying MIMO
technology to each subcarrier of OFDM. As shown in Figures 4.14 and 4.15,
assuming the system has N subcarriers, the transmitter has NT antennas,
and the receiver has NR antennas. In this framework, the transmitter divides
the data symbols into NT data streams and performs the same OFDM mod-
ulation processing at each transmitting antenna. At the receiver, the signals
from each receiving antenna undergo OFDM demodulation processing, result-
ing in NRN received signals. At this point, a MIMO signal can be observed on
each subcarrier, consisting of NT transmitted signal components and NR re-
ceived signal components. For each subcarrier, the NR received signals can be
detected using MIMO detection, thereby recovering the NT data streams and
original data symbols transmitted. Before delving into the detailed discus-
sion of the MIMO-OFDM system model, let’s first explain the general MIMO
system model, taking into account channel effects as depicted in Figure 4.16.
In this model, the received signal can be expressed as Eq. (4.38), where y[n],
H[n], x[n], and n[n] represent the received signal, channel, transmitted signal,
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FIGURE 4.15
Illustration of the MIMO-OFDM receiver architecture.

FIGURE 4.16
Illustration of the general architecture of MIMO systems.

and noise, respectively.13 The specific details are described in Eqs. (4.39) and
(4.40):

y[n] =

Lh−1∑
i=0

H[l]x[n− l] + n[n]. (4.38)

y[n] = [y(1)[n], · · · , y(NR)[n]]T ;x[n] = [x(1)[n], · · · , x(NR)[n]]T

n[n] = [n(1)[n], · · · , n(NR)[n]]T .
(4.39)

13We consider the digital signals after sampling in this section.
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FIGURE 4.17
Illustration of the architecture of MIMO-OFDM systems.

H[n] =


h11[n] h12[n] · · · h1NT

[n]
h21[n] h22[n] · · · h2NT

[n]
...
...
. . .

...
hNR1[n] hNR2[n] · · · hNRNT

[n]

 (4.40)

It is worth noting that in this context, the channel is assumed to exhibit
frequency-selective fading, where Lh represents the length of the time-domain
channel response. In Eq. (4.40), hij [n] denotes the SISO time-domain channel
response between the ith receiving antenna and the jth transmitting antenna,
while H[n] can be viewed as the nth coefficient of the MIMO time-domain
channel response. In the case of a flat fading channel, the aforementioned
MIMO system can be simplified to Eq. (4.41):

y[n] = Hx[n] + n[n]. (4.41)

In this scenario, the analysis and processing of the system become more
straightforward, and the benefits of MIMO are easier to realize. However, in
most communication systems today, there is a higher demand for bandwidth,
and the channels are predominantly characterized by frequency-selective fad-
ing. To achieve a flat fading channel environment, the most direct and effective
approach is to divide the system’s bandwidth into multiple smaller subbands,
known as subcarriers, and implement MIMO technology on each subcarrier.
Based on this concept, the combination of MIMO and OFDM becomes a nat-
ural choice.

In this section, we will introduce the MIMO-OFDM signal model, depicted
in Figure 4.17. In the model, X represents the frequency-domain transmitted
signal (data symbols) with a length of NNT, u represents the time-domain
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transmitted signal (OFDM symbols) with a length of (N + Ng)NT, includ-
ing the CP, v represents the time-domain received signal with a length of
(N+Ng)NR, Y represents the frequency-domain received signal with a length

of NNR, and X̂ represents the estimated value of X. Due to the temporal
and spatial dimensions of the MIMO-OFDM signal, it is highly complex. To
achieve clarity and conciseness, we represent it in matrix and vector forms. In
Figure 4.17, the original transmitted signal (data symbols) is first divided into
NT parallel data streams. Each data stream is then divided into code blocks
of length N , and these signals are arranged in a vector format, resulting in X
given as:

X = [XT
0 X

T
1 · · ·XT

N−1]
T ;Xk = [X

(1)
k X

(2)
k · · ·X

(NT)
k ]T . (4.42)

Next, each block of X undergoes an inverse discrete Fourier transform
(IDFT) operation, which is equivalent to multiplying by the IDFT matrix
F−1. This yields NT time-domain signals of length N . Each time-domain
signal is then appended with a CP by multiplying it with the Θ matrix, and
the processed signals are arranged in a vector format, resulting in the OFDM
symbols u, where the relationship between u and X is expressed as:

u = (Θ⊗ INT
)(F−1 ⊗ INT

)X = (ΘF−1 ⊗ INT
)X, (4.43)

where ⊗ represents the Kronecker product, defined as:

A =

[
a11 a12
a21 a22

]
⇒ A⊗B =

[
a11B a12B
a21B a22B

]
, (4.44)

and the structure of the CP matrix Θ is given by

Θ =

[
ONg×(N−Ng) INg

IN

]
(N+Ng)×N

. (4.45)

It is worth noting that the structure of X involves grouping by subcarriers
as sub-vectors {X0,X1, ...,XN−1}, and within each sub-vector, elements are

grouped by transmitting antennas as {X(1)
k , ..., X

(NT)
k }. This differs from the

previous procedure, hence the need to represent it using Kronecker product
notation. The advantage of the notation in Eq. (4.42) is that it treats the
MIMO-OFDM signal as a vector version of the OFDM signal. This allows for
a focus on the processing at the OFDM level before addressing the MIMO
aspect.

When the CP is shorter than the delay spread, the received signal cor-
responding to a particular OFDM symbol is only interfered by the previous
OFDM symbol, as shown in Figure 4.18. Therefore, the received signal v after
passing through the channel can be represented as:

v = G · u+G(−) · u(−) + n, (4.46)
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FIGURE 4.18
Illustration of the inter-symbol interference effect in OFDM systems.

where u and u(−) are the current and previous OFDM symbols, respectively,
n is the noise, and G and G(−) are the channels corresponding to u and u(−),
respectively, given as:

G =



H[0] O · · · O O O O

H[1] H[0]
. . .

... O O O
... H[1]

. . . O
... O O

H[Lh − 1]
...

. . . H[0] O · · · O

O H[Lh − 1]
... H[1] H[0] O

...
...

...
. . .

... H[1]
. . . O

H[0] O · · · H[Lh − 1] · · · H[1] H[0]


;

(4.47)
and

G(−) =



O
... H[Lh − 1]

... H[1]
...

. . .
...

. . .
...

O · · · O
... H[Lh − 1]

...
. . .

...
. . .

...

O · · · O
... O


. (4.48)

Next, the receiving end reverses the signal processing steps performed at the
transmitting end. Specifically, the CP is first removed, followed by applying
the discrete Fourier transform (DFT) operation to obtain Y, expressed as:

Y = (F⊗ INR
)(Υ⊗ INR

)v

= (F⊗ INR)(Υ⊗ INR)G(Θ⊗ INT)(F
−1 ⊗ INT)X+ (FΥ⊗ INR)n

= [YT
0 Y

T
1 · · ·YT

N−1]
T ;Yk = [Y

(1)
k Y

(2)
k · · ·Y (NT)

k ]T ,

(4.49)

where Υ is given as:
Υ = [ON×Ng

IN×N ]. (4.50)

By combining the removal of the CP and the channel effects, an equivalent
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channel matrix He can be formed as:

He = (Υ⊗ INR
)G(Θ⊗ INT

)

=



H[0] 0 0 0 H[Lh − 1] · · · H[1]

H[1] H[0] 0
... 0 0 H[2]

... H[1]
. . . 0

... 0
...

H[Lh − 1]
...

. . . H[0] 0
... H[Lh − 1]

0 H[Lh − 1]
... H[1] H[0] 0

...
...

...
. . .

...
. . .

. . . 0
0 0 · · · H[Lh − 1] H[Lh − 2] · · · H[0]


(4.51)

It can be observed that He is a block circulant matrix. Utilizing the properties
of matrix algebra, the block circulant matrix He, after undergoing block IDFT
and block DFT operations, becomes a block diagonal matrix H, given as:

H = (FΥ⊗ INR
)He(F

−1Υ⊗ INT
) =


H0 O · · · O

O H1
. . .

...
...

. . .
. . . O

O · · · O HN−1

 (4.52)

By the above, Eq. (4.49) can then be simplified as:

Y = (FΥ⊗INR
)(Υ⊗INR

)G(Θ⊗INT
)(F−1⊗INT

)X+N = HX+N, (4.53)

where the relationship between the transmitted and received signals for the
kth subcarrier is expressed as:

Yk = HkXk +Nk, (4.54)

where

Yk =


Y

(1)
k
...

Y
(NR)
k

 =


H

(1,1)
k H

(1,2)
k · · · H

(1,NT)
k

H
(2,1)
k

. . .
. . .

...
...

. . .
. . .

...

H
(NR,1)
k · · · · · · H

(NR,NT)
k




X
(1)
k
...

X
(NT)
k



+


N

(1)
k
...

N
(NR)
k

 (4.55)

It can be seen from Eq. (4.55) that although MIMO-OFDM appears complex,
it can be simplified as treating different subcarriers as independent flat-fading
MIMO systems on the corresponding subcarriers.
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FIGURE 4.19
Illustration of the selection diversity.

In the following subsection, based on the signal model described in Eq.
(4.55), we will explore the encoding, detection, and precoding techniques for
MIMO systems. Before discussing MIMO encoding, let us introduce several
spatial diversity approaches.
Receive diversity: The concept of receive diversity aims to improve the relia-
bility of signal reception by exploiting the characteristics of different received
signals experiencing diverse channel fading. Specifically, in scenarios where
both the transmitter and receiver have a single antenna, channel fading may
lead to unstable reception at the receiver. However, if the receiver is equipped
with multiple antennas, and the antennas are sufficiently spaced apart, the
channels between the receiver and transmitter antennas can be considered un-
correlated. In this case, as long as one of the channels provides good reception,
the receiver can reliably capture the signal, thereby enhancing reception relia-
bility. Receive diversity can be achieved through mechanisms such as selection
diversity, switched diversity, and linear combining. Selection diversity involves
choosing the best-quality signal among all received signals, as illustrated in
Figure 4.19. Switched diversity entails switching to another receiving antenna
when the quality of the received signal falls below a predefined threshold, as
shown in Figure 4.20. Linear combining involves combining the signals from
multiple receiving antennas linearly to obtain the final received signal, as de-
picted in Figure 4.21.14 The commonly used linear combining techniques are
equal gain combining (EGC) and maximum ratio combining (MRC). Assum-
ing there are two receiving antennas at the receiver, and each antenna receives
a signal as follows: r1[n] = A1e

jϕ1x[n]+n1[n], r2[n] = A2e
jϕ2x[n]+n2[n]. After

linear combining, we obtain:

y[n] = α1r1[n] + α2r2[n] (4.56)

The mechanism of EGC is to sum the received signals from each antenna after
compensating for their phases without adjusting their amplitudes. The corre-
sponding weights for EGC are α1 = e−jϕ1 , α2 = e−jϕ2 . On the other hand,
the mechanism of MRC is to compensate for the phase of each received signal
and multiply it by its amplitude before summing them. The corresponding

14For the sake of simplicity, let’s consider the explanation using two receiving antennas.
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FIGURE 4.20
Illustration of the switched diversity.

FIGURE 4.21
Illustration of the linear combining.

weights for MRC are α1 = A1e
−jϕ1 , α2 = A2e

−jϕ2 . As the name suggests, the
objective of MRC is to maximize the SNR after combining. Its mechanism is
equivalent to a matched filter or a matched beamformer, where the receiver
matches the spatial response of the received signals.
Transmit diversity: The concept of transmit diversity in wireless communi-
cation systems aims to enhance reception reliability by utilizing signals trans-
mitted from different antennas, which may experience diverse channel fading
characteristics. Similar to receive diversity, if the transmitter has multiple an-
tennas with sufficient spacing between them, the channels between each trans-
mit antenna and the receive antenna can be considered uncorrelated. There-
fore, as long as any one of the channels is good enough, the receiver can stably
receive the signal and improve reception reliability. At first glance, transmit
diversity may seem similar to receive diversity, where the signal processing
at the receiver is moved to the transmitter. However, there is a fundamental
difference between them, which is the presence or absence of channel state
information (CSI). In most wireless communication systems, coherent demod-
ulation is employed at the receiver, allowing it to estimate the channel response
based on reference signals or pilot signals. However, the transmitter does not
have access to this channel information. In time division duplex (TDD) sys-
tems, the reciprocity of the channel allows the transmitter to directly obtain
CSI. In frequency division duplex (FDD) systems, the transmitter needs to
rely on feedback from the receiver to obtain CSI, but the accuracy of CSI at
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the transmitter may be compromised if the channel changes rapidly. Consid-
ering this practical factor, the design of transmit diversity strategies needs to
take into account whether the transmitter has CSI or not. When the transmit-
ter has CSI, it can utilize the reverse operation of receive diversity to achieve
diversity gain at the receiver. However, in the case where the transmitter lacks
CSI, the diversity mechanism is referred to as open-loop transmit diversity, as
the system does not receive CSI feedback from the receiver. One representa-
tive example of open-loop transmit diversity is cyclic delay diversity (CDD),
which is commonly used in OFDM systems.15 The relationship between the
transmitted and received signals in CDD can be expressed as follows:

r[n] = h1[n] ∗ s[n] + h2[n] ∗ s[((n− nd))N ], (4.57)

where h1[n] and h2[n] represent the channels between the two transmit anten-
nas and the receive antenna. (())N denotes the cyclic shift with a period of N
(number of subcarriers). In an OFDM system, the time-domain cyclic delay
is equivalent to a phase shift in the frequency domain. Assuming the origi-
nal frequency-domain symbol for the kth subcarrier is Xk, the relationship
between s[n] and Xk is given by the IDFT:

s[n] =
1

N

N−1∑
k=0

Xke
j2π kn

N , n = 0, 1, · · · , N − 1. (4.58)

In this case, the frequency-domain received signal can be represented as fol-
lows:

Yk = H
(1)
k Xk +H

(2)
k ej2π

knd
N Xk = (H

(1)
k +H

(2)
k ej2π

knd
N )Xk, (4.59)

where the relationship between Yk and r[n] can be expressed as the DFT:

Yk =
N−1∑
n=0

r[n]ej2π
kn
N , k = 0, 1, · · · , N − 1. (4.60)

H
(1)
k and H

(2)
k are the frequency responses of h1[n] and h2[n], respectively.

From Eq. (4.59), it can be observed that CDD modifies the frequency re-
sponse of the channel, transforming the original channel Hk into an equivalent

composite channel H
(c)
k :

H
(c)
k = H

(1)
k +H

(2)
k ej2π

knd
N . (4.61)

The key point of the above discussion is that CDD introduces delay, caus-
ing additional phase variations on different subcarriers at the receiver. This
is analogous to deliberately adding frequency-selective fading effects to the
channel, allowing the system to achieve frequency diversity gain at the re-
ceiver without requiring CSI at the transmitter.

15We continue with the example of two transmit antennas. The CDD technique has been
employed in the 3GPP LTE-A (Long Term Evolution-Advanced) standard.
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FIGURE 4.22
Illustration of space-time codes.

Another method to achieve open-loop transmit diversity is through space-
time codes, as shown in Figure 4.22. Space-time codes encode the transmitted
symbols in the time and spatial domains, utilizing the redundancy provided
by these domains to achieve diversity gain at the receiver. Similar to chan-
nel coding, space-time codes can be classified into space-time trellis codes
(STTC) and space-time block codes (STBC). When there is sufficient space-
time redundancy, space-time codes can also provide limited error correction
capabilities. In practice, STTCs are more complex and difficult to implement,
so this section will focus on STBCs. The STBC encodes the input symbol
block s into a space-time codeword X, as shown in the following equation:

s = [s1, s2, · · · , sL]T → X =


x1(1) x1(2) · · · x1(K)
x2(1) x2(2) · · · x2(K)

...
...

. . .
...

xNT(1) xNT(2) · · · xNT(K)

,

 (4.62)

where L is the time-domain length of the input symbol block, K is the time-
domain length of the output space-time codeword, and NT is the number of
transmit antennas.16 The equation demonstrates that the space-time block
code encodes an L×1 symbol into an NT×K codeword, providing significant
redundancy. The code rate in the time domain, denoted as R, is given by R =
L/K, which can theoretically reach 1. The Alamouti code is a representative
space-time block code, as shown in Figure 4.23. The encoding mechanism of
the Alamouti code is represented as follows:

s = [s1, s2]
T → X =

[
s1 −s∗2
s2 s∗1

]
. (4.63)

Hence, the code rate is R = 1. Alamouti code encodes two symbols into a
2× 2 space-time codeword. At the transmitter, in the first time slot, the two
antennas transmit s1 and s2 respectively, while in the second time slot, they
transmit −s∗2 and s∗1. At the receiver, let y1 and y2 be the received signals in

16Commonly used space-time block codes typically satisfy the condition K ≥ NT.
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FIGURE 4.23
Illustration of the Alamouti codes.

the first and second time slots, respectively. As shown in

y1 = h1s1 + h2s2 + n1

y2 = −h1s∗2 + h2s
∗
1 + n2,

(4.64)

taking the complex conjugate of y2 and representing it in vector form yields:

y =

[
y1
y∗2

]
=

[
h1 h2
h∗2 −h∗1

] [
s1
s2

]
+

[
n1
n∗2

]
= Hs+ n (4.65)

In Eqs. (4.64) and (4.65), h1 and h2 represent the channels between the trans-
mitting antennas and the receiving antennas, n1 and n2 are the noise terms,
and H can be seen as the equivalent channel matrix between the transmit-
ted symbols and the received signals. Therefore, the decoding at the receiver
can utilize the channel information H and the received signal y to recover
the transmitted symbols s. The theoretically optimal decoding method is the
maximum likelihood (ML) decoding, as shown in Eq. (4.66):

ŝ = argmin
s∈S
||y −Hs||2, (4.66)

where S represents the set of symbols. ML decoding requires a multidimen-
sional search, which is impractical in practice, so suboptimal solutions are
often used instead. By observation, it can be seen that H satisfies the condi-
tion HHH = (|h1|2 + |h2|2)I. Therefore, multiplying both sides of Eq. (4.65)
by HHH yields:

HHy = (|h1|2 + |h2|2)
[
s1
s2

]
+HHn (4.67)

and [
ŝ1
ŝ2

]
=

1

|h1|2 + |h2|2
HHy =

[
s1
s2

]
+

1

|h1|2 + |h2|2
HHn. (4.68)

Eq. (4.68) shows that s1 and s2 can be directly obtained through normalized
HHy decision, making it a relatively simple decoding process. The informa-
tion suggested in Eq. (4.67) is that the Alamouti code achieves a diversity
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FIGURE 4.24
Illustration of ABBA codes.

gain of 2. Both s1 and s2 are transmitted through two channels, h1 and h2,
to the receiver, which combines the two received signals using maximum ratio
combining. In other words, Alamouti code cleverly transforms the scenario of
two transmitters and one receiver into an equivalent scenario of one transmit-
ter and two receivers, allowing even a single-antenna receiver to benefit from
full diversity gain. Alamouti code is also applicable in the frequency domain,
where y1 and y2 represent received signals in different frequency bands, and
the derivation is similar to the time domain. Due to its excellent performance,
simple decoding process, and flexible application, Alamouti code has been
widely used in mainstream wireless and mobile communication system stan-
dards. However, it is limited to using only two transmit antennas. Alamouti
code possesses the property of orthogonal design, expressed as:

XXH = (|s1|2 + |s2|2)I. (4.69)

Orthogonal design is the key factor that enables Alamouti code to possess
the aforementioned advantages. In scenarios with more than two antennas,
there is no simple design method for STBCs. To maintain diversity gain and
simple decoding, a trade-off must be made by reducing the code rate. If the
code rate is to be increased, orthogonal design needs to be abandoned. ABBA
code is a representative example of a non-orthogonal STBC, as shown in Figure
4.24. Eqs. (4.70) and (4.71) provide the equations of the procedure shown in
the figure:

s = [s1, s2, s3, s4]
T → X =


s1 −s∗2 s3 −s∗4
s2 s∗1 s4 s∗3
s3 −s∗4 s1 −s∗2
s4 s∗3 s2 s∗1

 ; (4.70)

X =

[
A B
B A

]
;A =

[
s1 −s∗2
s2 s∗1

]
;B =

[
s3 −s∗4
s4 s∗3

]
. (4.71)

Therefore, the code rate is R = 1. ABBA code encodes four symbols into
a 4 × 4 space-time codeword, transmitted over four antennas in four time
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slots. The principle behind ABBA code is to treat two symbols as a pair
and construct Alamouti space-time codewords. These Alamouti codewords
are then interleaved to form the final space-time codeword matrix, which
gives ABBA code its distinctive structure. Similar to Eq. (4.65), the received
signals in the four time slots for the ABBA code can be expressed as:

y =


y1
y∗2
y3
y∗4

 =


h1 h2 h3 h4
h∗2 −h∗1 h∗4 −h∗3
h3 h4 h1 h2
h∗4 −h∗3 h∗2 −h∗1



s1
s2
s3
s4

+ n = Hs+ n. (4.72)

Multiplying both sides of the equation by HH yields:

HHy =


ρ 0 β 0
0 ρ 0 β
β 0 ρ 0
0 β 0 ρ



s1
s2
s3
s4

+HHn,

ρ =
4∑

n=1

|hn|2;β = 2Re{h∗1h3 + h∗2h4}

(4.73)

Unlike Alamouti code, the HHH matrix in Eq. (4.73) is not diagonal, in-
dicating inter-symbol interference. Therefore, the receiver needs to perform
additional signal processing or even ML decoding to eliminate this interfer-
ence, which is the cost paid by ABBA code to achieve higher code rates.

Block codes can also be implemented in both spatial and frequency do-
mains, which is known as the concept of space-frequency block code (SFBC).
In scenarios with more than two antennas, SFBC can be combined with fre-
quency shift transmit diversity (FSTD) to achieve higher code rates. This
combination is referred to as SFBC-FSTD.17 Let’s take the example of Alam-
outi SFBC to illustrate, as shown in Figure 4.25. The encoding mechanism of
SFBC-FSTD can be represented as follows:

s = [s1, s2, s3, s4]
T → X =


s1 s2 0 0
−s∗2 s∗1 0 0
0 0 s3 s4
0 0 −s∗4 s∗3

 . (4.74)

The SFBC-FSTD code encodes four symbols into a 4 × 4 space-frequency
codeword, transmitted over four frequencies and one time slot, resulting in a
code rate of R = 4. The encoding mechanism involves treating two symbols
as a group to construct an Alamouti space-frequency codeword, and then
arranging two Alamouti space-frequency codewords diagonally to form the
final space-frequency codeword matrix. Similar to Eq. (4.72), the received

17The SFBC-FSTD technique has been applied in the 3GPP LTE-A standard.
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FIGURE 4.25
Illustration of SFBC-FSTD codes.

signals for the four frequencies in SFBC-FSTD can be represented as:

y =


y1
y∗2
y3
y∗4

 =


h1 −h∗2 0 0
h2 h∗1 0 0
0 0 h3 −h∗4
0 0 h4 h∗3



s1
s2
s3
s4

+ n = Hs+ n (4.75)

Then, by multiplying both sides of the equation by HH , we obtain:

HHy =


ρ1 0 0 0
0 ρ1 0 0
0 0 ρ2 0
0 0 0 ρ2



s1
s2
s3
s4

+HHn;

ρ1 = |h1|2 + |h2|2; ρ2 = |h3|2 + |h4|2.

(4.76)

Unlike the ABBA code, Eq. (4.76) has HH as a diagonal matrix, indicating no
interference between symbols. This advantage is achieved at the cost of con-
suming more frequency resources. Similar to the Alamouti code, s1, s2, s3, s4
can be obtained directly through normalized HHy decision.

4.4 MIMO Signal Detection

In this section, we will discuss the detection techniques for MIMO systems
in the scenario of spatial multiplexing without channel information at the
transmitter. We continue to assume that the MIMO channel exhibits slow
fading and flat fading, as depicted in Figure 4.26. The signal model can be
represented as:

y[n] = Hx[n] + n[n], (4.77)

where x[n] is the transmitted signal vector, y[n] is the received signal vector,
NT and NR are the numbers of transmit and receive antennas, respectively.
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FIGURE 4.26
Illustration of the signal model regarding MIMO systems exhibiting slow fad-
ing and flat fading.

H = [hij ] is the NR × NT channel matrix, where hij denotes the i.i.d. com-
plex Gaussian fading gains following CN (0, 1) distribution. n[n] is the noise
vector with elements being i.i.d. complex Gaussian random variables follow-
ing CN (0, σ2), and σ2 represents the noise power. Finally, we let P as the
average transmit power of the transmit antennas and define γ = P/σ2

n as the
SNR without considering the channel effects.18 As shown in Figure 4.26 and
Eq. (4.77), the original transmitted signal in a MIMO system is divided into
NT sub-signals, which are transmitted from different antennas. After passing
through the channel, these sub-signals become intertwined at the receiving
antennas, resulting in inter-antenna interference (IAI). Therefore, the receiver
needs to employ specific processing techniques to separate the sub-signals and
achieve spatial multiplexing. This is the objective of MIMO detection, which
aims to recover the transmitted signal x[n] using the received signal y[n] and
the channel information H. The ML method provides the optimal solution
for MIMO detection. Assuming that the transmitted signal comes from a fi-
nite set of symbols, ML MIMO detection can be formulated as the following
problem:

x̂[n] = arg min
x[n]∈S

||y[n]−Hx[n]||2, (4.78)

where S represents the set of transmitted symbols. The ML solution is ob-
tained by substituting all possible symbol combinations into Eq. (4.78) and
selecting the one with the minimum Euclidean distance. However, ML detec-
tion requires an exhaustive search in a high-dimensional space, resulting in
high complexity that is generally impractical for real-world communication
systems. Therefore, alternative suboptimal solutions are needed. In the fol-
lowing sections, we will introduce three methods: linear detection, nonlinear
detection, and sphere decoding. It is assumed that NT ≤ NR, meaning that
the receiving end has sufficient degrees of freedom to recover the transmitted
signal.

18To ensure a fair comparison, regardless of the number of transmitting antennas, we
assume a fixed total transmit power in MIMO systems.
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MIMO linear detection: Linear MIMO detection consists of two steps:
(1) suppressing inter-antenna interference through signal processing and (2)
recovering the transmitted data using symbol detection. These steps can be
represented by the following two equations:

z[n] = WHy[n]; (4.79)

and
x̂[n] = Dec{z[n]}, (4.80)

where W is an NR ×NT interference suppression matrix, z[n] is the received
signal after interference suppression, and Dec represents symbol decision. The
problem in linear MIMO detection is to find an appropriateW. The most com-
mon linear MIMO detection technique is zero-forcing (ZF) detection, which
aims to completely eliminate inter-antenna interference while simultaneously
accurately recovering all transmitted signals without distortion. The solution
for the interference suppression matrix W in ZF detection is obtained as fol-
lows:

W = H(HHH)−1 = (H+)H , (4.81)

where H+ represents the pseudo-inverse of H. ZF detection completely sup-
presses inter-antenna interference, and the processed signal is given by:

z[n] = x[n] + (HHH)−1HHn[n]. (4.82)

In the absence of noise, ZF detection is an optimal solution. However, in sit-
uations where the channel is ill-conditioned and H is close to rank deficiency,
the pseudo-inverse H+ may amplify the noise power, thus affecting the perfor-
mance of the symbol decision. Another commonly used linear MIMO detection
technique is MMSE detection. The principle of MMSE detection is to min-
imize the mean square error (MSE) between the transmitted and received
signals. Mathematically, it can be expressed as:

W = argmin
w

E{||x[n]−WHy[n]||2}, (4.83)

with the solution as

W = H(HHH+
NT

γ
INT

)−1. (4.84)

The processed signal is given by:

z[n] = (HHH+
NT

γ
INT)

−1HHHx[n] + (HHH+
NT

γ
INT)

−1HHn[n]. (4.85)

MMSE detection takes into account both the channel and noise effects, making
it more robust than ZF detection in adverse channel conditions. By examining
Eqs. (4.82) and (4.85), we can observe that MMSE detection approximates ZF
detection at high SNR and approaches matched filtering at low SNR. Although
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FIGURE 4.27
Illustration of the successive interference cancellation mechanism.

linear detection techniques have lower complexity, their performance may not
be sufficient to achieve high-quality transmission in communication systems.
MIMO nonlinear detection: A promising approach to improve linear de-
tection is the introduction of interference cancellation mechanisms. Unlike
interference suppression, interference cancellation aims to restore the interfer-
ing signals and subtract them from the received signals, thereby purifying the
received signals before performing detection. This process leads to enhanced
detection performance. Interference cancellation can be broadly classified into
two categories: successive interference cancellation (SIC) and parallel interfer-
ence cancellation (PIC). In the following, we will focus on MIMO detection
techniques that combine linear detection with SIC interference cancellation.
Since interference restoration and cancellation involve nonlinear operations,
these detection techniques are considered nonlinear. The concept of SIC is
illustrated in Figure 4.27. When a particular signal is successfully detected, it
is subtracted from the received signal in the subsequent detection stage, re-
ducing the interference component in the received signal and facilitating the
detection of the next signal. Specifically, the first linear detector detects the
first signal, and then the second linear detector subtracts the detected signal
from its received signal before detecting the second signal. At this stage, the
detector only needs to handle the interference formed by the third to NTth
signals, thereby having more degrees of freedom to combat noise and improve
detection performance. This process continues until the last linear detector,
at which point all interferences have been subtracted. The application of the
aforementioned detection process to MIMO detection results in a linear SIC-
MIMO detection architecture, as depicted in Figure 4.28. The corresponding
detection process is summarized in Figure 4.29. In this context, zl[n] repre-
sents the processed signal of the lth detector, wl is the weight vector of the
lth detector, x̂l[n] denotes the decision signal of the lth detector, and hl cor-
responds to the channel vector of the lth signal. The linear detectors in the
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FIGURE 4.28
Illustration of the linear SIC-MIMO detector architecture.

FIGURE 4.29
Illustration of the linear SIC-MIMO detection procedure.

aforementioned process can be ZF or MMSE detectors, or any detector that
linearly extracts signals from interference. In the SIC detection algorithm
described above, it is assumed that the signals eliminated at each stage are
correct. However, in practical scenarios, signal detection is not error-free, and
detection errors can lead to the propagation of erroneous interference, result-
ing in more severe interference. This phenomenon is known as error propaga-
tion. To mitigate error propagation, a commonly used approach is to adjust
the order of signal detection in advance, known as ordered SIC (OSIC). The
principle of ordering can be determined based on the system’s performance
requirements. One intuitive idea is to detect stronger signals earlier since they
are less prone to errors. Therefore, the order can be determined based on
the SNR values of the signals, i.e., SNRo1 > SNRo2 > · · · > SNRoNT , where
SNRol represents the SNR of the lth original signal after sorting. According
to this ordering principle, apart from detecting signals with lower error rates
first, it also avoids severe interference caused by high SNR signals to other
signals. Another approach to mitigate error propagation is to use channel cod-
ing. When a signal is received with errors, channel coding can be employed
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to correct the errors before feeding the corrected signal into the next stage,
reducing the probability of error propagation. The MIMO detection scheme
that combines linear interference suppression and OSIC is commonly referred
to as V-BLAST (vertical Bell Lab Layered space-time).19

MIMO sphere detection: As previously mentioned, the optimal MIMO
detection method is the ML method, which seeks the best solution using Eq.
(4.78). However, an exhaustive search in practice is infeasible due to its com-
putational complexity. Moreover, linear and SIC) detection methods do not
fully achieve the desired performance. Therefore, the exploration of alternative
low-complexity nonlinear detection methods, which approach the performance
of the ML method, has become a crucial research topic in the field of MIMO.

One such algorithm that fulfills the requirements of high performance and
low complexity in MIMO detection is sphere decoding (SD) [92]. SD, also
known as the sphere decoder, has gained significant attention in recent years
and is widely utilized in the development of practical communication systems.
The fundamental idea behind SD is to set a finite search region to reduce the
complexity of ML detection. It centers the search around the received signal,
within a multidimensional sphere of a given radius D, to replace the global
search of ML. In other words, SD only performs ML search for codewords that
satisfy the following condition:

||y[n]−Hx[n]||2 ≤ D2. (4.86)

The concept of sphere decoding may seem simple, but a critical issue in its
implementation is how to determine the parameter D. If D is chosen too
large, the complexity increases, while selecting it too small may lead to the
possibility of missing the true optimal solution. To further reduce complex-
ity, SD utilizes QR decomposition on the channel matrix H, transforming
the high-dimensional search into multiple low-dimensional searches. The QR
decomposition is represented as Eq. (4.87):

H = [Q1Q2]

[
R
O

]
, (4.87)

where Q1 is an NR ×NT matrix, Q2 is an NR × (NR −NT) matrix, [Q1Q2]
is a unitary matrix, and R is an NT ×NT upper triangular matrix with the
structure as shown below

R = [Q1Q2]


r11 r12 · · · r1NT

0 r22 · · · r2NT

...
...

. . .
...

0 0 · · · rNTNT

 , (4.88)

The matrix O is an (NR −NT)timesNT all-zero matrix. By substituting Eq.
(4.87) into Eq. (4.86) and multiplying the left-hand side by [Q1Q2]

H , we

19Please refer to ref. [91] for more details.
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FIGURE 4.30
Illustration of the tree-based search sphere decoding method.

obtain Eq. (4.89) as follows:20

||QH
1 y[n]−Rx[n]||2 ≤ D2 − ||QH

2 y[n]||2 = d2. (4.89)

Let z[n] = QH
1 y[n], then Eq. (4.90) can be rewritten as follows:

||z[n]−Rx[n]||2 = ||

 z1
...

zNT

−

r11 r12 · · · r1NT

0 r22 · · · r2NT

...
...
. . .

...
0 0 · · · rNTNT


 x1

...
xNT

 ||2 ≤ d2.
(4.90)

Eq. (4.90) can be expanded to Eq. (4.91) as follows:

NT∑
i=1

|zi −
NT∑
j=1

rijxj |2 =

NT∑
i=1

Bi ≤ d2. (4.91)

where Bi represents the branch metric, indicating the measurement of errors,
and the accumulation of branch metrics is known as the path metric, defined
as follows:

Pl =

NT∑
i=1

Pi. (4.92)

From Eq. (4.91), it is evident that solving for xi only depends on
xi+1, xi+2, · · · , xNT

, thus transforming the high-dimensional sphere search
problem into a tree-based search to enhance search efficiency. The represen-
tation of the tree-based search in Figure 4.30 depicts each layer performing a
search for a single codeword, with different nodes representing different possi-
ble values for that codeword. The mathematical description of the tree-based
search in Figure 4.30 is as follows: First, in NTth layer, the search for xNT

is

20By leveraging the property of unitary transformations, the norm of vectors remains
unchanged.
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performed as follows:

|zNT
− zNTNT

xNT
|2 ≤ d2 −

NT−1∑
i=1

Bi ≈ d2. (4.93)

The approximation used here implies that the currently unknown values
B1, · · · , BNT−1 are discarded and not considered during the search process.
After completing the search, the xNT

(node) satisfying Eq. (4.93) is retained
in the NTth layer of the tree diagram. Subsequently, for each retained xNT

,
in the NT − 1th layer, a search is performed for xNT−1 as follows:

|zNT−1 − r(NT−1)NT
xNT

− r(NT−1)(NT−1)xNT−1|2

≤ d2 − |zNT − r(NT)NT
xNT |2 −

NT−2∑
i=1

Bi

≈ d2 − |zNT
− r(NT)NT

xNT
|2.

(4.94)

The mentioned approximation implies that the currently unknown values
B1, · · · , BNT−2 are discarded and not considered during the search process.
After completing the search, the xNT−1 (node) satisfying Eq. (4.94) is recorded
in the NT− 1th layer of the tree diagram. This process is repeated iteratively
until reaching the first layer. After executing the aforementioned search pro-
cedure, the optimal solution is determined as the one having the minimum
total path metric P1 among all complete path combinations.

4.5 MIMO Precoding

MIMO precoding is a signal processing technique that applies suitable trans-
formations to the transmitted signals before transmission. This allows the
receiving end to achieve the desired system performance. During the design of
a precoder, the transmitting end often needs to utilize channel information,
as the quality of the channel and the accuracy of its information significantly
impact the performance of the precoder. This section will introduce several
MIMO precoding design methods under different system configurations and
various forms of channel information. From a system architecture perspective,
MIMO precoding can be categorized into single-user and multi-user precod-
ing. Regarding channel information, it can be further classified into precoding
based on Channel State Information at the Transmitter (CSIT) and precoding
based on a codebook.
Single-user MIMO precoding: The concept of SU-MIMO precoding sys-
tem is depicted in Figure 4.31. In this system, the transmitting end aims to
transmit Q signals, and the precoded transmitted signal vector is denoted as:

x[n] = Fs[n], (4.95)
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FIGURE 4.31
Illustration of the SU-MIMO precoding systems.

where s[n] = [s1[n], ..., sQ[n]]
T represents the original transmitted signal vec-

tor, and F is the NT×Q precoding matrix. After passing through the channel
H, the received signal vector is given by:

y[n] = Hx[n] + n[n] = HFs[n] + n[n]. (4.96)

To facilitate the derivation, we assume that {si[n]} are mutually independent
and have unit power, and n[n] is a noise vector with i.i.d. CN (0, σ2) elements.
Therefore, their respective correlation matrices can be represented as:

Rss = E{s[n]sH [n]} = IQ;Rnn = E{n[n]nH [n]} = σ2
nINR

. (4.97)

Finally, after undergoing the corresponding MIMO decoding process, the re-
ceived signal becomes:

ŝ[n] = Gy[n] = GHFs[n] +Gn[n], (4.98)

where G is the Q×NR decoding matrix. The purpose of the aforementioned
precoding system is to design appropriate matrices F andG to ensure that the
decoded signal ŝ[n] closely approximates the original transmitted signal s[n].
It should be noted that the number of original transmitted signals Q must not
exceed the smaller value between the number of transmitting antennas and
receiving antennas, i.e., Q ≤ minNR, NT, and should not exceed the rank of
the channel matrix H to adhere to the system’s multiplexing gain constraint.

Assuming that the transmitting end has complete CSIT, the most common
approach for precoding design is to maximize the system transmission rate.
This entails designing a precoding matrix that maximizes the MIMO channel
capacity, as represented in Eq. (4.99):

max
F

log2[det(IQ+
1

σ2
n

FHHHHF)](bps/Hz) subject to tr(FFH) = tr(Rxx) ≤ P

(4.99)
where Rxx = E{x[n]xH [n]} = FFH , as obtained from Eq. (4.97), and P is
the total power constraint on the transmitted signals. The design method to



MIMO Precoding 129

maximize the transmission rate, as described previously, resembles the water-
filling algorithm, and its optimal solution is given by:

Ropt
xx = VQdiag([P1, · · · , PQ]

T )VH
Q (4.100)

where VΛVH is the eigenvalue decomposition of (1/σ2)HHH, VQ is the ma-
trix consisting of the first Q rows of V, and P1, P2, ..., PQ represents the power
allocated to each transmitted signal. Finally, by comparing Eq. (4.100) with
the structure of Rxx = FFH , we obtain the optimal precoder as:

Fopt = VQdiag([
√
P1, · · · ,

√
PQ]

T ) (4.101)

It is noteworthy that the maximum transmission rate precoding only depends
on the transmitting end, hence the decoder can be any arbitrary MIMO de-
tector.

The purpose of MMSE precoding is to minimize the mean square error be-
tween the decoded signal and the transmitted signal, as shown in Eq. (4.102):

min
G,F

E{||ŝ[n]− s[n]||2} subject to tr(FFH) = tr(Rxx) ≤ P (4.102)

where ŝ is the estimated transmitted signal. The error vector is given by:

ŝ[n]− s[n] = GHFs[n]− s[n] +Gs[n] (4.103)

The solution to Eq. (4.101) can be represented as follows:21

F = VΦf ; G = ΦgV
HHH/σ2

n, (4.104)

where VΛVH is the eigenvalue decomposition of HHH, and the expressions
for Φf and Φg are given by:

Φf = (λ−1/2Λ−1/2 −Λ−1)
1/2
+ ; Λg = (λ1/2Λ−1/2 − λΛ−1)

1/2
+ Λ−1/2,

(4.105)
Here, λ represents the Lagrange multiplier, which must satisfy the total trans-
mit power constraint, and (.)+ denotes the operation of setting negative ele-
ments of a matrix to zero. By substituting Eq. (4.104) into Eq. (4.103) and
rearranging, it can be observed that GHF becomes a diagonal matrix. This
implies that the system, after precoding, channel, and decoding, has an equiva-
lent channel that has been diagonalized. Consequently, the transmitted signals
are separated and decoded individually.
Codebook-based MIMO precoding: The precoder designs introduced
above are based on the assumption that the transmitter has complete channel
information, which is difficult to implement in practice due to the large feed-
back bandwidth requirement.22 A more practical approach is to only feedback

21Please refer to ref. [93] for more details.
22This holds in the context of an FDD system. If a TDD system is employed, the trans-

mitter can independently estimate the channel.
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FIGURE 4.32
Illustration of the codebook-based MIMO precoding systems.

limited channel or precoder information. A common method for limited feed-
back is channel quantization and precoder quantization. Currently, in many
mainstream communication systems, the adopted scheme falls under precoder
quantization, known as codebook-based precoding. The concept of codebook-
based precoding is as follows: A set of precoders is designed in advance and
integrated into a codebook. Each precoder in the codebook is assigned a unique
index number. Both the transmitter and the receiver possess complete infor-
mation about this codebook. Before transmitting the signal, the receiver per-
forms channel estimation and selects an appropriate precoder from the code-
book based on the channel information. The index of the selected precoder is
then fed back to the transmitter, which uses the chosen precoder to transmit
the signal. Assuming the codebook contains no more than 2B precoders, the
receiver only needs to send back B bits of information, significantly reducing
the feedback data volume. The architecture of the codebook-based precoding
system is depicted in Figure 4.32, where F represents the codebook, and Fi

is the ith precoder in the codebook. The most crucial issues in codebook-
based precoding are as follows: (1) how to select the optimal precoder from
the codebook; (2) how to design the codebook to maximize the system perfor-
mance while minimizing the feedback overhead. These considerations play a
pivotal role in determining the overall efficiency and performance of codebook-
based precoding systems. Among them, the more well-known methods include
Grassmannian packing, vector quantization (VQ), and random vector quan-
tization (RVQ).23 After providing the codebook and channel information, the
receiver can select different criteria for precoder selection. The minimum sin-
gular value criterion aims to maximize the minimum singular value of the
equivalent channel HFi, expressed mathematically as follows:

Fopt = arg max
Fi∈F

λmin{HFi} subject to tr(FiF
H
i ) ≤ P. (4.106)

23Please refer to ref. [94] for more details.
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Here, λmin{HFi} denotes the minimum singular value of HFi. As HFi repre-
sents the equivalent channel after combining the precoder, increasing its mini-
mum singular value can result in a smaller condition number for the equivalent
channel, leading to improved transmission performance. The maximum capac-
ity criterion seeks to maximize the capacity of the equivalent channel HFi and
is mathematically expressed as follows:

Fopt = arg max
Fi∈F

log2[det(IQ +
1

σ2
n

FH
i HHHFi)] subject to tr(FiF

H
i ) ≤ P.

(4.107)
The MMSE criterion aims to minimize the mean-square error between the
decoded signal and the transmitted signal. It is mathematically expressed as
follows:

Fopt = arg min
Fi∈F

tr((IQ +
1

σ2
n

FH
i HHHFi)

−1) subject to tr(FiF
H
i ) ≤ P.

(4.108)
Here, the MMSE criterion assumes that the receiver decoding utilizes the
MMSE detection based on the equivalent channelHFi. Apart from the MMSE
criterion, the aforementioned codebook-based precoding methods do not in-
volve decoder design. Users may choose an appropriate MIMO detection strat-
egy according to their specific requirements.
Multi-mode MIMO precoding based on codebook: MIMO systems can
provide varying degrees of diversity gain or multiplexing gain based on their
channel conditions. Thus, under different channel conditions, a careful trade-
off should be made to select the most appropriate transmission mode. Precod-
ing in conjunction with the chosen transmission mode is referred to as multi-
mode precoding, where “mode” indicates the number of transmitted signals
or data streams. Multi-mode precoding simultaneously selects the precoder
and the mode, enabling the system to comprehensively respond to channel
conditions and transmission requirements. The system architecture is illus-
trated in Figure 4.33, where Q represents the number of transmitted data
streams (i.e., modes), M is the set of all modes, and FQ corresponds to the
codebook used for mode Q. In multi-mode precoding, the selection of the opti-
mal precoder from all the modes and their corresponding precoders is based on
the selection criteria described in the previous section. Taking the maximum
capacity criterion as an example, its mathematical expression is as follows:

Fopt = Fopt
Q

Q = argmax
q∈M

log2[det(Iq +
1

σ2
n

(Fopt
q )HHHHFopt

q )]

Fopt
Q = arg max

Fi∈Fq

log2[det(Iq +
1

σ2
n

FH
i HHHFi)]

subject to tr(FiF
H
i ) ≤ P.

(4.109)

In this formulation, the total transmission power constraint ensures that the
output power at the transmitter remains constant across different modes to
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FIGURE 4.33
Illustration of the codebook-based multi-mode MIMO precoding systems.

achieve fairness. Eq. (4.109) indicates that the selection criterion aims to find
the best precoder from each mode, and then from this set of candidates, the
final selected precoder is determined.
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Interference Management and
Multiple Access in
Communication Systems

5.1 Overview of MU-MIMO

In the previous chapter, we discussed the mainstream signal processing tech-
niques to support multiple-input multiple-output (MIMO) communication
in single-user scenarios with dedicated time/frequency resources. However,
in practical scenarios, a base station will often need to serve a group of
users simultaneously. Moreover, in the coverage of the base station, differ-
ent communications, such as WiFi, Bluetooth, and so on, might also take
place at the same time. While a straightforward idea is to provide dedicated
time/frequency resources to ensure interference-free transmissions, we will dis-
cuss how modern communication systems handle mutual interference issues
by joint transceiver designs to allow minimum cross-interference when sharing
time/frequency/spatial resources. Note that this consideration is increasingly
important due to the exponentially increasing number of devices, making it
almost impossible to have delicate time/frequency/spatial resources for each
device. Also, note that the discussed solutions in this chapter can be applied
to both aforementioned cases, no matter the geo-located scenario (e.g., a base
station aims to serve a group of users simultaneously) or geo-separated sce-
nario (e.g., several transceiver pairs in each other’s coverage) as long as the
transmitters have a certain level of joint design capability. In the following sec-
tions, we will divide different solutions based on the main considered resource
domain, that is, time/frequency/spatial domains into different categories to
let readers understand the mainstream resource management solutions spe-
cialized for interference mitigation purposes.

5.2 Beamforming/Precoding Techniques

In the most normal scenario, a group of users will be served using the same
time/frequency resources. In this case, a lot of research is conducted to
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FIGURE 5.1
Illustration of the multi-user MIMO precoding systems.

discuss how to separate those transmissions in the spatial domain to minimize
the cross-interference with each other. In this sense, different beamforming and
precoding solutions are proposed with different trade-offs between achieved
performance and implementation complexity, so that they can be employed in
different scenarios. However, to perform this type of design, the assumption
that all channel state information (CSI) to different users is known on the
transmitter side is required. Thus, we can provide corresponding transceiver
designs to the spatial profile of each user (i.e., CSI). Following each intro-
duced solution, there are some works discussing how to relax this assumption,
providing enhancements to work with imperfect CSI and statistical CSI. In-
terested readers are encouraged to check those recent designs [95–98], which
will not be covered in this section owing to page limitations. The concept of
multi-user MIMO (MU-MIMO) precoding involves equipping the transmitter
with multiple antennas to transmit Q signals to Q different receivers, each
equipped with a single antenna. The system concept is illustrated in Figure
5.1. In this scenario, the transmitter applies precoding to the transmitted sig-
nals, while each receiver individually receives its corresponding signal. The
received signal is represented as follows:

y[n] = H

Q∑
q=1

fqsq[n] + n[n] = HFs[n] + n[n], (5.1)

where y[n] = [y1[n], ..., yQ[n]]
T denotes the vector composed of Q received

signals, and s[n] = [s1[n], ..., sQ[n]]
T denotes the vector composed of Q trans-

mitted signals. The matrix F = [f1, ..., fQ] represents the NT × Q precod-
ing matrix, where fi is the precoding vector designed for the ith receiver.
The Q × NT channel matrix H = [h1, ...,hQ] consists of all channels and hi

denotes the channel from the transmitter to the ith receiver. Under the afore-
mentioned assumptions, si[n] are mutually independent and have unit power,
and n[n] is a noise vector with independent and identically distributed (i.i.d.)
CN (0, σ2

n) elements. In the context of a multi-user MIMO precoding system,
the receiver is equipped with a single antenna, which severely limits its ability
to counteract interference. Therefore, the primary objective of precoding is to
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FIGURE 5.2
Illustration of the zero-forcing precoding systems.

design the precoding matrix F in such a way that mutual interference among
the receivers is minimized, enabling each receiver to recover its intended sig-
nal. To achieve this goal, the transmitter needs to possess channel information
beforehand. The direct approach to eliminate mutual interference among the
receivers is the zero-forcing (ZF) precoding method, similar to ZF MIMO
detection. The objective of ZF precoding is to direct individual transmitted
signals toward their respective receivers while ensuring no impact on other
receivers, as depicted in Figure 5.2. In this context, the precoding vector fi
acts as a transmitting beamformer specifically designed for the ith receiver. It
aligns the beam toward the ith receiver while nulling the signals toward other
receivers, i.e.,

hT
i fZF,q = 0, q ̸= i. (5.2)

The solution for the ZF precoder is given as follows:

fZF,q =
[H+]i

k||[H+]i||
, (5.3)

where H+ = HH(HHH)−1) is the pseudo-inverse of H, and [H+]i represents
the ith row of H+. The parameter k is the normalization coefficient, ensuring
that the precoder complies with the total transmission power constraint. Based
on Eq. (5.2), the received signal at the ith receiver can be expressed as:

yi[n] = hT
i

Q∑
q=1

fZF,qsq[n] + ni[n]

= hT
i fZF,qsi[n] +

Q∑
q=1,q≠i

hT
i fZF,qsq[n] + ni[n]

=
1

k||[H+]i||
si[n] + ni[n].

(5.4)
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From Eq. (5.4), it can be observed that for all other receivers, the combination
effect of precoding and the channel is zero, meaning they will not receive any
interference from the transmitted signal si[n]. Similar to ZF detection, the
performance of ZF precoding is affected in adverse channel conditions, but
not due to noise amplification. Instead, it is caused by the amplification of
the norm of H+. Consequently, the received signal in Eq. (5.1) will be divided
by a large value, leading to a decrease in signal-to-noise ratio (SNR). This
phenomenon is referred to as power reduction.

The objective of minimummean-square error (MMSE) precoding is to min-
imize the mean squared error between the received signal and the transmitted
signal, as shown below:

min
F

E{||y[n]− s[n]||2} subject to tr(FFH) ≤ P, (5.5)

where the error vector is defined as:

y[n]− s[n] = HFs[n]− s[n] + n[n]. (5.6)

The solution to Eq. (5.4) can be expressed as:

F =
1

k
HH(HHH +

Qσ2
n

P
IQ)

−1, (5.7)

where k is the normalization coefficient to ensure that the precoder complies
with the total transmission power constraint. The MMSE precoder strikes a
balance between the effects of interference and noise. At high SNR, it behaves
similarly to the ZF precoder, while at low SNR, it resembles the matched
precoder.1

The concept of SINR-based precoding involves setting the minimum SINR
value that each receiver needs to satisfy. Then, from all the solutions that meet
this condition, the precoding matrix that minimizes the total transmission
power is selected. This design concept can be formulated as an optimization
problem:2

min
F

tr(FFH)

subject to
|hT

i fi|2∑Q
q=1,q≠i |hT

i fq|2 + σ2
n

≥ SINRT,i,

tr(FFH) ≤ P,

(5.8)

where SINRT,i represents the target SINR for the ith receiver, and the optimal
solution still needs to satisfy the total transmission power constraint. Eq.
(5.8) represents a common non-convex quadratic problem, and obtaining the
optimal solution is challenging. In practice, the problem is often tackled using
semi-definite relaxation (SDR) to find the best approximate solution that
meets the given constraints.

1The matched precoder directly matches the channel by employing precoder F = HH .
2Please refer to ref. [99] for more details.
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FIGURE 5.3
Illustration of the DPC precoding and decoding systems.

The concept of dirty paper coding (DPC) aims to handle interference effec-
tively by utilizing precoding techniques when the transmitter has prior knowl-
edge of the interference.3 The design is based on a specific modulo function
defined as follows:

π(y) = y − ⌊y + τ/2

τ
⌋τ, (5.9)

where ⌊.⌋ denotes the floor function, which only takes the integer part of the
input and τ is a design parameter. If the signal source is s and the known
interference is i, then the precoded signal x is given by:

x = π(s− i) = s− i− τk. (5.10)

The variable k represents the integer quotient resulting from the modulo func-
tion operation. Utilizing the modulo function offers the advantage of restrict-
ing the encoded signal to the interval [−τ/2, τ/2], with its magnitude remain-
ing constant regardless of variations in interference. At the decoding end, the
received signal (including the signal source, interference, and noise) only needs
to undergo the original modulo function operation to obtain the decoded sig-
nal, as shown in Eq. (5.11):

ŝ = π(x+ i+ n) = π(s− i− τk + i+ n)

= π(s+ n).
(5.11)

From Eq. (5.11), it is evident that the decoder can completely eliminate inter-
ference. As long as |s+n| does not exceed τ/2, the decoded signal will appear
as if there was no interference.

A multi-user MIMO precoding system incorporating the concept of dirty
paper coding is illustrated in Figure 5.3. Assuming NT ≥ NR, s[n] =
[s1[n], ..., sNR

[n]]T represents the original transmitted signal vector, and the
MIMO transmission-reception relationship is given as:

y[n] = Hx[n] + n[n] = RHx
′
[n] + n[n],

x[n] = Qx
′
[n],

(5.12)

3Please refer to refs. [100,101] for more details.
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where HH = QR represents the QR decomposition of HH , and Q satisfies
QHQ = I, while R is an upper triangular matrix. From Eq. (5.12), it can be
observed that the channel effect transforms into an upper triangular matrix
RH , and interference effects have been partially eliminated, thereby reducing
the complexity of the front-end dirty paper precoding. The design premise of
the dirty paper precoder is to ensure that the received signal is not affected
by interference. Therefore, the following precoding conditions are considered:

RHx
′
[n] = Ds[n], (5.13)

where

RH =


r11 0 · · · 0
r21 r22 · · · 0
...

...
. . .

...
rNR1 rNR2 · · · rNRNR

 , (5.14)

D = diag(r11, · · · , rNRNR). (5.15)

Expanding Eq. (5.13) results in the following set of equations:
r11 0 · · · 0
r21 r22 · · · 0
...

...
. . .

...
rNR1 rNR2 · · · rNRNR




x
′

1[n]

x
′

2[n]
...

x
′

NR
[n]

 =


r11s1[n]
r22s2[n]

...
rNRNRsNR [n]

 . (5.16)

The below set of equations can be obtained:

x
′

1[n] = s1[n]

x
′

2[n] = s2[n]−
r21
r22

x
′

1[n]

...

x
′

NR
[n] = sNR

[n]−
rNR(NR−1)

rNRNR

x
′

NR−1[n]− · · · −
rNR1

rNRNR

x
′

1[n].

(5.17)

In Eq. (5.17), one can notice that the ith equation depends only on the first
i − 1 equations, so the solution should be obtained in a top-down manner.
This set of equations can be simplified into matrix form as follows:

x
′
[n] = s[n] + (I−D−1RH)x

′
[n]. (5.18)

Note that the encoded signal should undergo the modulo function operation
to maintain the transmission signal power constraint.
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5.3 Scheduling Techniques

After visiting how the current communication systems utilize spatial diversity
for multi-user interference mitigation, we want to introduce existing schedul-
ing techniques in this section to let readers understand how time resource
management is scheduled when serving multiple users. The introduced re-
source scheduling techniques have two main benefits, making the resource
scheduling mechanism also a popular and practical solution in modern com-
munication systems. First, compared with the precoding/beamforming solu-
tions to improve user experience, resource scheduling solutions can be im-
plemented in no CSI or partial CSI scenarios (e.g., resource scheduling can
only be based on channel quality indicator (CQI), instead of full CSI). On
the other hand, precoding/beamforming solutions often require precise CSI
to carefully design spatial responses to serve different users using the same
time/frequency resources. Second, even with precise CSI, resource schedul-
ing techniques can be implemented and work with precoding/beamforming
solutions for further performance enhancement. In fact, in modern communi-
cation systems, this procedure is often done in the MAC layer by performing
user grouping; then precoding/beamforming solutions are developed in the
PHY layer to serve a user group using the same time/frequency resources
by means of utilizing spatial diversity. Mathematically speaking and with-
out losing generality, we consider a MU-MIMO system containing a single
base station with M antennas and K serving users, which has N antennas.
If the previously discussed linear precoding solutions are employed to sup-
port independent data streams for each antenna in each user, the system
has a fundamental constraint to serve at most Kmax = ⌊M/N⌋ users us-
ing the same time/frequency resource. Thus, one can define the search space
as KSS = {K ⊆ {1, 2, ...,K} : 1 ≤ |K| ≤ Kmax} containing all possible
user scheduling results. Accordingly, we can form the following optimization
problem for the joint design of the precoding/beamforming problem and user
scheduling problem:

max
K⊆KSS

max
P

∑
k∈K

wklog2(1 + SINRk), (5.19)

where the outer optimization aims to find the optimal user grouping result,
and then the inner optimization can allow available spatial resources to serve
each user in the group simultaneously. This problem is interesting because of
the considered trade-off between a number of serving users and the allocation
of spatial diversity. On the one hand, trying to serve as many users as possi-
ble, or even all users, at the same time can lead to more terms from different
users (i.e., log2(1+SINRk)) to be summed up. On the other hand, the under-
lying channel from the transmitter to all users might become ill-conditioned,
and a lot of terms will consequently be close to 0 and do not contribute to
a higher sum-rate. Thus, this problem is worthy of consideration to obtain
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the optimal trade-off between those factors. In Eq. (5.19), P is the set con-
taining all precoding/beamforming weightings to affect the SINR of each user
and wk is the predefined user weights based on service or application type.
Depending on the considered scenarios, different types of constraints can be
added to emphasize beamforming constraint, power constraint, and fairness
(e.g., the minimum achievable rate when serving each user) for the considered
scenarios. In this section, we assume that mature precoding/beamforming
solutions are employed to solve the inner optimization, letting us only concen-
trate on the outer optimization problem first. Obviously, brute-force solutions
can be employed to solve the outer optimization problem by searching over
each possible solution exhaustively as |KSS| =

∑Kmax

m=1 C
k
m. However, this is

often computationally prohibited, especially when K >> Kmax holds. Thus,
different suboptimal solutions are developed, trying to achieve a better trade-
off between performance and complexity and being the main content of the
rest of this section. In light of this direction, we introduce two mainstream so-
lutions, direct solution and indirect solution, for the interested user scheduling
problem.
Direct solution: Direct solutions aim to solve the original optimization prob-
lem in Eq. (5.19) without any relaxation. For example, the idea of greedy
algorithms is widely used to do so. Given a fixed precoding structure and
CSIT assumption, the set K is constructed by a sequence of decisions. In
each round, every newly selected user finds a local maximum for an objective
function to ensure the improvement of the objective function without heavy
computations. Thus, the greedy scheduling rule requires low computational
complexity and is easy to implement. However, it does not guarantee either
performance or convergence to the optimal solution since a lot of possible com-
binations are skipped and will never be considered in the following rounds.
An example of a greedy user scheduler is ref. [102]. This example shows the
usage of the combination of a greedy solution (for outer optimization) and ZF
precoding solution (for inner optimization) to provide comprehensive designs
to Eq. (5.19). Note that the transmitter must have channel information so
that every iteration the precoders are recalculated to solve the inner problem.
Also, note that the maximum number of iterations is at most Kmax. Specif-
ically, since the transmitter knows the precoders and the transmit powers,
the achievable rates, SINR, BERs or other desired performance indicators are
known for each iteration, allowing the scheduler to identify when it is worth
adding more users to K. This type of solution is especially efficient when the
candidacy space is too large to be searched exhaustively by providing an ac-
ceptable solution with low complexity. However, also inheriting the drawback
of greedy-based algorithms, the obtained solution might show a considerable
performance gap with the optimal solution since a lot of possible combina-
tions are never considered during the whole process. Nonetheless, this is still
a mainstream solution when it comes to MIMO scheduling; interested readers
are also encouraged to read refs. [103,104] for more details.
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Indirect solution: Instead of solving the original problem directly, this di-
rection of solutions tries to decouple Eq. (5.19) as two subproblems to allow
a sequential solving process, showing as:

Kmap = argmaxK⊆K̄:|K|≤Kmax
f(H(K)),

max
P

:
∑

k∈Kmap

wklog2(1 + SINRk).
(5.20)

The first equation models the combinational user grouping problem, where
f(H(K)) stands for the selected performance indicator. One can notice that
the user grouping problem is an NP-C problem while the second problem
can be solved using convex optimization efficiently. Thus, different literature
in this direction develops various algorithms to solve user grouping problems
with acceptable complexity or relax the problem by introducing assumptions.
Interested readers are also encouraged to read refs. [105,106] for more details.

In the above works, the direct solution utilizes greedy user scheduling and
ZF precoding to iteratively solve the interested problem, while the indirect
solution decouples the original problem into two sub-problems to be solved
independently. Now, we aim to take a closer look at how existing indirect
solutions can be applied to finish the joint design of user scheduling and pre-
coding/detection matrix simultaneously. Let us consider a downlink scenario,
where a base station with NT antennas aims to serve a set of available users
Kuser at the same time. Assuming that kth user is with NR,k antennas for
data reception. At tth timeslot, only a subset of users (i.e., K(t) ⊆ Kuser) can
be served simultaneously due to the limited spatial diversity to serve multiple
users at the same time and we denote the antenna index as k = 1, 2, ...,K(t)
to refer to the assigned antenna at the moment. Thus, all the antennas can
be assigned to a specific user as

K(t)∑
k=1

dk(t) = NT, (5.21)

where dk(t) is the number of antennas scheduled for kth user, satisfying
dk(t) ≤ NR,k. Specifically, the transmitted signal for kth user can be ex-
pressed as xk(t) ∈ Cdk(t)×1 will be processed by linear precoding matrix
Mk(t) ∈ CNT×dk(t) so that the received signal yk(t) ∈ CNR,k×1 at the kth
user can be expressed as:

yk(t) = Hk(t)Mk(t)xk(t) +
∑

i̸=k,i∈K(t)

Hk(t)Mi(t)xi(t) + nk(t), (5.22)

where Hk(t) ∈ CNR,k×NT is the channel matrix and nk(t) ∈ CNR,k×1 is the
noise vector. To decode the desired data, kth user can employ a detection
matrix Bk(t) ∈ CNR,k×dk(t) as:

ỹk(t) = Bk(t)
Hyk(t) = H̃k(t)Mk(t)xk(t)+

∑
i̸=k,i∈K(t)

H̃k(t)Mi(t)xi(t)+ ñk(t),

(5.23)
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where H̃k(t) = Bk(t)
HHk(t) represents the equivalent channel matrix and

ñk(t) = Bk(t)
Hnk(t) stands for the equivalent noise vector. With the above

formulations, the joint scheduling and precoding design problem can be ex-
pressed as:

{B,M} = argmax
B,M

Kuser∑
i=1

Ci(B,M), (5.24)

where B = {Bi}Kuser
i=1 , M = {Mi}Kuser

i=1 , Ci(B,M) = log2 |Idi
+

R−1
i (H̃iMiM

H
i H̃H

i )| is the capacity for ith user and Ri is the interference
and noise term. Note that the unit power constraint should be applied to Eq.
(5.24) by allowing

∑Kuser

i=1 tr(MiM
H
i ) ≤ Pmax where Pmax is the predefined

power limit. To solve the above optimization problem, a simple but effective
solution is provided below for the reader’s reference.

An intuitive solution to the above optimization is to schedule users with
better channel conditions to maximize the system sum-rate. Specifically, for
all candidate user channel Hi, we perform singular value decomposition as
Hi = UiΛiV

H
i , then the proposed algorithm selects the NT largest singular

values of the set {λi,j |i = 1, ...,Kuser, j = 1, ..., rank(Hi)} to build the de-
tection matrices Bk with the corresponding left singular vectors vi,j . This is
equivalent to conducting the optimization of the sub-problem below:

B = argmax
B

Kuser∑
i=1

||BH
i Hi||2. (5.25)

Note that the user scheduling is also done in the above optimization since
only users with better channel conditions will be allowed to transmit and
receive desired data in each timeslot; other users remain silent and wait for the
scheduling in the following timeslots. After the user scheduling and detection
matrices are designed in the above step, the precoding matrices Mk can also
be derived by maximizing the sum-rate with the additional zero interference
constraint among the users. This will lead to optimal performance in the
high-SNR region, since interference will be the major bottleneck here, while
the performance still has some room for further improvement in the low-SNR
region. Specifically, the optimization problem below is considered:

M = argmax
M

Kuser∑
i=1

Ci(B,M). (5.26)

In Eq. (5.26), besides the power constraint
∑Kuser

i=1 tr(MiM
H
i ) ≤ Pmax, an

additional constraint H̃iMj = 0, if i ̸= j will be considered to ensure zero
interference. The resulting precoding matrix Mk can be expressed as

Mk = ΘkPk = V̄0
kṼkPk, (5.27)

where V̄0
k ∈ CNT×dk can be obtained by choosing the basis of the dk-

dimensional null space of the NT × NT − dk matrix H̄H
k with the singular
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value decomposition:

H̄H
k = [H̃H

1 ...H̃
H
k ...H̃

H
K ]H

= [ŪiŪ
0
i ]

[
Λ̄i O
O O

]
[V̄iV̄

0
i ]

H .
(5.28)

In Eq. (5.27), selecting matrix Ṽk ∈ Cdk×dk (i.e., the range space of H̃H
k )

guarantees the zero inter-user interference constraint. Moreover, the diagonal
power allocation matrix Pk ∈ Cdk×dk can be obtained by the multi-user wa-
terfall criterion for optimal power allocations. Simulation results confirm that
improved performance can be obtained compared to benchmark designs in
the high-SNR region. We suggest readers interested in this direction to read
refs. [107–112] for more details and the recent developments.

5.4 NOMA Transceiver Designs

In the idea of resource scheduling, non-overlapping time-domain resources
are specified to different users for interference-free transmissions. Similarly,
in the orthogonal frequency division multiplexing chapter, we also introduce
how to design transceivers to allow multiple users to transmit over different
frequencies simultaneously. While those orthogonal transmission schemes pro-
vide great performance and enable serving multiple users simultaneously, it
is almost impossible to serve the increasingly growing number of end users
using limited time/frequency resources. Thus, researchers also investigate the
usage of non-orthogonal data transmissions. In this direction, non-orthogonal
multiple access (NOMA) transmissions have caught a lot of attention in recent
years. Specifically, instead of letting multiple users occupy time/frequency re-
sources exclusively to utilize orthogonal resources, NOMA allows signals from
multiple users to be superposed in the power-domain in a non-orthogonal
manner (i.e., multiple users will utilize the same time-frequency domain for
data transmission). On the one hand, the spectral utilization can be further
improved by doing so. On the other hand, the transceivers also need to be
specially designed to tackle the messy messages containing overlapping sig-
nals from multiple users, which has been a popular research topic recently.

In this direction, MIMO-NOMA represents a cutting-edge innovation in
wireless communications, combining the strengths of MIMO systems and
NOMA to address the escalating demands for higher spectral efficiency, mas-
sive connectivity, and enhanced user experience in next-generation networks
like 5G and beyond. The rapid proliferation of mobile devices and the bur-
geoning Internet of Things (IoT) ecosystem necessitate an exponential in-
crease in network capacity and efficiency. Traditional orthogonal multiple ac-
cess (OMA) techniques such as time division multiple access (TDMA), fre-
quency division multiple access (FDMA), and orthogonal frequency division
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FIGURE 5.4
An illustration of a two-user downlink power-domain NOMA scheme with
superposition coding and successive interference cancellation decoding (copy-
right from ref. [113]).

multiple access (OFDMA) allocate distinct time, frequency, or code resources
to each user, inherently limiting the number of simultaneous users and lead-
ing to suboptimal spectral utilization. These methods struggle to meet the
high data rate requirements and low latency expectations of modern applica-
tions. NOMA addresses these limitations by allowing multiple users to share
the same time-frequency resources but distinguishes them in the power do-
main, as shown in Figure 5.4. This approach leverages differences in users’
channel conditions, enabling superposition coding at the transmitter and suc-
cessive interference cancellation (SIC) at the receiver. By allocating higher
power levels to users with weaker channel conditions and lower power levels
to those with stronger channels, NOMA can significantly enhance spectral ef-
ficiency and user connectivity. This power-domain multiplexing allows NOMA
to serve more users simultaneously within the same bandwidth, substantially
improving overall network throughput and accommodating the diverse service
requirements of modern communication systems. The integration of NOMA
with MIMO technology further amplifies these benefits. MIMO systems, which
utilize multiple antennas at both the transmitter and receiver, exploit spa-
tial diversity and multiplexing gains to enhance link reliability and increase
data rates. By combining MIMO with NOMA, the system can simultaneously
exploit both spatial and power domains, achieving unprecedented levels of
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spectral efficiency and capacity. MIMO-NOMA can support a larger number
of users with higher data rates, improved reliability, and better quality of ser-
vice (QoS). This is particularly advantageous in scenarios with a high density
of users and varying channel conditions, such as urban environments and in-
door hotspots. The motivation behind MIMO-NOMA is multifaceted. First,
there is a pressing need to accommodate the explosive growth of connected de-
vices and the IoT, which traditional OMA methods cannot efficiently support.
Second, the diverse application scenarios of next-generation networks require
flexible and scalable solutions that can dynamically allocate resources based
on real-time conditions and user requirements. MIMO-NOMA’s ability to dy-
namically adjust power allocation and leverage spatial multiplexing makes it
ideal for such environments. Third, the demand for higher data rates and
lower latency in applications such as virtual reality (VR), augmented reality
(AR), and autonomous driving necessitates more efficient use of the available
spectrum. MIMO-NOMA’s enhanced spectral efficiency directly addresses this
need. However, the integration of MIMO and NOMA also introduces new chal-
lenges. Signal processing complexity increases, particularly in the design of
effective SIC algorithms and power allocation strategies. Resource allocation
and user grouping become more complex due to the interplay between spatial
and power domains. Additionally, managing interference in dense user envi-
ronments and ensuring fairness among users with diverse channel conditions
are critical issues that require innovative solutions. Overall, MIMO-NOMA
is a sophisticated and promising technology that represents a significant ad-
vancement in wireless communications. It offers a pathway to meeting the
stringent requirements of future wireless networks, including higher capacity,
better spectral efficiency, and enhanced user experience.

In the following example, we will introduce the NOMA system model and
theoretical rate to let readers better understand this innovative and emerging
data transmission technique. To intuitively see the provided benefits, a com-
parison between NOMA and OMA will also be elaborated mathematically in
this section. We consider the downlink scenario, where a base station with M
antennas utilizes NOMA to serve multiple users with the same time-frequency
resources simultaneously. We assume that those users are randomly grouped
into M clusters with two users in each group, and each user has N antennas
(N > M) for data reception, as shown in Figure 5.5. Thus, for the kth user
in the mth cluster (i.e., user (m, k), m ∈ {1, 2, ...,M} and k ∈ {1, 2}), the
received signal of the user (m, k) ym,k can be expressed as:

ym,k = Hm,kPs̃+ nm,k, (5.29)

where Hm,k ∈ CN×M is the downlink channel matrix, P ∈ CM×M is the
precoding matrix applied by the base station to the symbol vector s̃ ∈ CM×1,
and nm,k ∈ CN×1 is the effective noise.

vH
m,kym,k = vH

m,kHm,kPs̃+ vH
m,knm,k. (5.30)

In the content below, we assume |vH
m,k|2 = 1 and P = IM , thus vH

m,kHm,kpn =
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FIGURE 5.5
Illustrations of the simulation model for a 3-user MIMO-NOMA system, where
the number of the transmit antennas, receive antennas and UEs are 3, 9, and
9, respectively (reproduced from ref. [114]).

0 for any m ̸= n to simplify the derivation process. Specifically, for
MIMO-NOMA transmission, the signals transmitted from the base station
to different users utilize the same time-frequency resources by means of power
domain division, that is:

s̃ =

 λ1,1s1,1 + λ1,2s1,2
...

λM,1sM,1 + λM,2sM,2

 , (5.31)

where sm,k is the information for user (m, k) and λm,k is the power allocation
coefficient for user (m, k). By denoting themth column of P by pm, Eq. (5.22)
can be rewritten as:

vH
m,kym,k = vH

m,kHm,kpm(λm,1sm,1 + λm,2sm,2)

+
M∑

n=1,n̸=m

vH
m,kHm,kpns̃n + vH

m,knm,k. (5.32)

We further assume that the channel gain of users in the same group is placed
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in order, that is:

|vH
m,1Hm,1pm|2 ≥ |vH

m,2Hm,2pm|2, m ∈ 1, 2, ...,M. (5.33)

In MIMO-NOMA, in the same group, the transmitter (i.e., base station) will
assign more power to the user with worse channel gain, as expressed as:

λm,1 ≤ λm,1. λm,1 + λm,2 = 1 and m ∈ 1, 2, ...,M. (5.34)

Thus, on the receiver side, SIC decoding can be applied directly to resolve the
superposition message effectively. To do so, user (m, 2) will decode its own
information sm,2 by treating signal sm,1 as interference. Thus, the achievable
rate of user (m, 2) can be expressed as:

RMIMO-NOMA
m,2

≤ log2(1 +
ρλm,2|vH

m,2Hm,2pm|2

ρ(1− λm,2)|vH
m,2Hm,2pm|2 + ρ

∑M
n=1,n̸=m |vH

m,2Hm,2pn|2 + 1
)

= log2(1 +
ρλm,2|vH

m,2Hm,2pm|2

ρ(1− λm,2)|vH
m,2Hm,2pm|2 + 1

),

(5.35)
where ρ is the transmit signal-to-noise ratio. Then, as for the user (m, 1), the
user will need to decode the message for user (m, 2) first, and then the user
can reconstruct and remove it from the overall received signal for decoding
the desired message with improved signal quality. Thus, the achievable rate
(m, 1) can be expressed as:

RMIMO-NOMA
m,1 ≤ log2(1 +

ρ(1− λm,2)|vH
m,1Hm,1pm|2

ρ
∑M

n=1,n̸=m |vH
m,1Hm,1pn|2 + |vm,1|2

)

= log2(1 + ρ(1− λm,2)|vH
m,1Hm,1pm|2).

(5.36)

In contrast, MIMO-OMA allocates delicate time-frequency resources to two
users in the same group for interference-free data transmission. Assuming that
α of the degree of freedom is allocated to user (m, 2) and the remaining 1−α
to user (m, 1). Thus, we define the transmit SNR allocated to user (m, 2) as
γρ/α and the SNR allocated to user (m, 1) as (1−γ)ρ/(1−α), where γ is the
power factor. With the above prior, the achievable rate for user (m, 1) can be
expressed as:

RMIMO-OMA
m,1 ≤ (1− α) log2(1 +

(1− γ)ρ|vH
m,1Hm,1pm|2

(1− α)
). (5.37)

Similarly, the achievable rate for user (m, 2) can be expressed as:

RMIMO-OMA
m,2 ≤ α log2(1 +

γρ|vH
m,2Hm,2pm|2

α
). (5.38)
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According to Jensen’s inequality and concavity of log(.), we obtain

RMIMO-OMA
m,1 +RMIMO-OMA

m,2

≤ log2(1 + (1− α)
(1− γ)ρ|vH

m,1Hm,1pm|2

(1− α)
+ α

γρ|vH
m,2Hm,2pm|2

α
)

= log2(1 + (1− γ)ρ|vH
m,1Hm,1pm|2 + γρ|vH

m,2Hm,2pm|2),

(5.39)

where the equality holds if
(1−γ)ρ|vH

m,1Hm,1pm|2

(1−α) =
γρ|vH

m,2Hm,2pm|2

α . This can

be achieved by letting optimal allocation as:

α∗ =
γ|vH

m,2Hm,2pm|2

γ|vH
m,2Hm,2pm|2 + (1− γ)|vH

m,1Hm,1pm|2
. (5.40)

By utilizing this optimal allocation factor, the optimal sum-rate shown in Eq.
(5.31) can be achieved when equality holds. On the other hand, from Eqs.
(5.27) and (5.28), the sum-rate of MIMO-NOMA of a group can be expressed
as:

RMIMO-NOMA
m,1 +RMIMO-NOMA

m,2 = log2(1 + ρ(1− λm,2)|vH
m,1Hm,1pm|2)

+ log2(1 +
ρλm,2|vH

m,2Hm,2pm|2

ρ(1− λm,2)|vH
m,2Hm,2pm|2 + 1

).

(5.41)

Given that
ρ(1−λm,1)|vH

m,1Hm,1pm|2+1

ρ(1−λm,2)|vH
m,2Hm,2pm|2+1

≥ 1 holds, we also have

RMIMO-NOMA
m,1 +RMIMO-NOMA

m,2

= log2(1 + ρ(1− λm,2)|vH
m,1Hm,1pm|2

+ ρλm,2|vH
m,2Hm,2pm|2

ρ(1− λm,2)|vH
m,1Hm,1pm|2 + 1

ρ(1− λm,2)|vH
m,2Hm,2pm|2 + 1

)

≥ log2(1 + ρ(1− λm,2)|vH
m,1Hm,1pm|2 + ρλm,2|vH

m,2Hm,2pm|2).

(5.42)

Finally, if we align the power allocation of the MIMO-NOMA and MIMO-
OMA by letting λm,2 = γ above, we obtain

RMIMO-NOMA
m,1 +RMIMO-NOMA

m,2 ≥ RMIMO-OMA
m,1 +RMIMO-OMA

m,2 . (5.43)

In conclusion, we prove that for any channel matrix Hm,k, the optimal achiev-
able of MIMO-NOMA can always outperform MIMO-OMA system, being the
main motivation to develop such systems by better tackling mutual inter-
ference when allowing multiple users to utilize the same time-frequency re-
sources. However, one should also note that the drawback is the additional
complexity burden of performing extra steps, such as user grouping and SIC,
in the NOMA transceiver compared to the OMA transceiver. In light of this
direction, a great body of literature has already worked on efficient NOMA
transceiver designs. We suggest readers interested in this direction to read
refs. [115–117] for further study.
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FIGURE 5.6
Frequency hopping spread spectrum subsystem transmitter (copyright from
ref. [118]).

5.5 FHSS Techniques

Besides the previously discussed methodologies, frequency hopping spread
spectrum (FHSS) is another technique, that can be used to improve the
robustness and reliability of wireless communications by rapidly switching
the carrier among many frequency channels. This method is highly effective
in mitigating interference and enhancing security. Thus, in the context of
modern wireless communications, FHSS is also expected to play a crucial
role in managing interference, which is a significant challenge due to the dy-
namic and dense nature of practical scenarios. Specifically, as shown in Fig-
ure 5.6, the block diagram of a typical FHSS system involves several key
components: A pseudo-random number generator to create the hopping se-
quence, frequency synthesizers to rapidly change the carrier frequency, and
synchronization mechanisms to ensure that the transmitter and receiver stay
in synchronization status. The process begins with the pseudo-random num-
ber generator producing a sequence of frequencies that both the transmitter
and receiver agree upon before communication starts. The transmitter then
modulates the data onto a carrier signal and hops between the frequencies
in the sequence. The receiver, aware of the same sequence, tunes to the cor-
responding frequencies at the correct times, thus demodulating the received
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signal correctly. The effectiveness of FHSS in mitigating interference can be
analyzed using concepts from information theory and signal processing. In a
noisy environment where interference sources are unpredictable, FHSS’s abil-
ity to spread the signal over a wide frequency range reduces the probability of
significant signal degradation. From a signal processing perspective, the rapid
frequency changes mean that any given interferer only affects the communica-
tion for a very short duration before the system hops to a different frequency.
This makes FHSS systems highly resilient to both accidental and deliberate
interference, ensuring reliable communication even under adverse conditions.
Here we present a simple example to elaborate the benefits provided by the
FHSS for interference mitigation. We consider binary frequency shift keying
(BPSK) with the FHSS system, where noncoherent matched filtering is uti-
lized for demodulation on the receiver. Thus, the receiver will make an error
if the transmitted signal is 1 but the received signal falls into the decision re-
gion of −1 and vice versa. Mathematically speaking, assuming that the signal
energy is Eb and the Gaussian noise power is N0

2 , the error probability of a
common AWGN channel can be expressed as:

Pe =
1

2
e−

Eb
2N0 . (5.44)

Now we consider a jammer with jamming power J while a transmitter with
transmit power P . The transmitter utilizes a bandwidth W = Rb, where Rb

is the transmission rate in (bits/second). The jammer also allocates its total
power over the whole bandwidth thus we have N0 = J/W in the case that
the jamming power is significantly larger than the noise power. In this case,
we have error probability as:

Pe =
1

2
e−

Eb
2N0 =

1

2
e−

P/W
2J/W =

1

2
e−

P
2J . (5.45)

Now, we assume the FHSS system provides a frequency degree of freedom so
that we have a total bandwidthWtotal for secure transmission. In this case, we
have η = Wtotal

W non-overlapping channel to select for data transmission. To
interfere the legitimate transmission, a jammer without any prior knowledge
can choose to spread its jamming power to the whole spectrum Wtotal, thus
we have N0 = J/Wtotal and the error rate of the legitimate transmission can
be expressed as:

Pe =
1

2
e−

Eb
2N0 =

1

2
e
− P/W

2J/Wtotal =
1

2
e−

Pη
2J . (5.46)

In the above example, one can see that 10 log10 η (dB) gain is provided by
the additional frequency degree of freedom against interference. Thus, η is
also named as spreading gain in FHSS-related research literature. As an al-
ternative, the jammer can also choose to only jam a fraction ρ of the whole
bandwidth to concentrate its power for interfering with legitimate transmis-
sion. Then, if the jammer and transmitter utilize the same channel, the error
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FIGURE 5.7
Environmental states at initial and convergent stages under different jamming
patterns (copyright from ref. [119]).

probability will be higher due to the increased noise power N0 = J/(ρWtotal)
while the error probability remains the same as Eq. (5.44). Thus, the error
rate can be expressed as:

Pe =
ρ

2
e−

Pηρ
2J +

1− ρ
2

e−
Eb
2N0 . (5.47)

From the above discussion, one can notice that by providing more channels for
the FHSS selection, the system performance can be further improved due to
the provided spreading gain. Furthermore, to avoid the jammer learning the
frequency-hopping pattern, the transmitter often adopts a random frequency-
hopping pattern so that the probability of a channel being selected by the
jammer and transmitter simultaneously can be approximated as uniform, as
shown in Figure 5.7. One of the key benefits of FHSS is its ability to provide
secure communication. By hopping frequencies in a predetermined pattern
known only to the transmitter and receiver, FHSS makes it difficult for unau-
thorized parties to intercept or jam the signal. This intrinsic security feature
is particularly valuable in military and secure communication applications.
Moreover, FHSS is less susceptible to narrowband interference, which affects
only a small portion of the spectrum at any given time. As a result, the
impact of such interference on FHSS systems is significantly reduced com-
pared to fixed-frequency systems. This characteristic makes FHSS an ideal
choice for environments with high levels of electromagnetic interference or
in scenarios where multiple devices operate simultaneously within the same
frequency band. In industrial and commercial applications, FHSS contributes
to enhanced performance and reliability of wireless networks. It allows for
efficient spectrum utilization, reducing the potential for congestion and im-
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FIGURE 5.8
Illustration of the implementation of FHSS solutions.

proving overall network capacity. The dynamic frequency hopping mechanism
ensures that the communication link remains stable, even in the presence
of potential interference sources. Specifically, FHSS operates by dividing the
available bandwidth into multiple frequency channels. The transmitter and
receiver hop between these channels in a synchronized manner according to a
pseudorandom sequence, as shown in Figure 5.8. This hopping pattern reduces
the likelihood of interference affecting the communication, as any single chan-
nel is used for only a short period. By frequently changing frequencies, FHSS
minimizes the impact of narrowband interference and makes the system more
resistant to jamming or interference introduced by simultaneous usage of the
same bands. The pseudo-random hopping sequence also makes it difficult for
eavesdroppers to intercept the communication without knowledge of the hop-
ping pattern. FHSS is well-suited for the highly dynamic and mobile nature
of vehicular communications, where the network topology frequently changes.
It provides a robust solution for managing interference in vehicular ad-hoc
networks (VANETs), enhancing both security and communication reliability.
Protocols like hopping reservation multiple access (HRMA) and multi-band
MAC exemplify effective implementations of FHSS, demonstrating significant
performance gains in terms of throughput and interference mitigation. As
VANETs continue to evolve, the integration of FHSS with emerging technolo-
gies will be critical to addressing future challenges and realizing the full po-
tential of intelligent transportation systems. Originally developed for military
applications, FHSS has found widespread use in various civilian communi-
cation systems, including Wi-Fi, Bluetooth, and other wireless technologies.
The fundamental principle behind FHSS is to spread the transmitted signal
over a wide range of frequencies by rapidly switching, or “hopping,” between
different frequency channels according to a predetermined pseudo-random se-
quence. This hopping sequence is known to both the transmitter and receiver,
allowing them to stay synchronized despite the frequent changes in frequency.
The applications of FHSS extend beyond simple interference mitigation. In the
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context of wireless networks, FHSS can improve the overall network perfor-
mance by reducing the probability of collisions and allowing multiple users to
share the same frequency band without significant mutual interference. This
makes FHSS an important technique for modern wireless communication sys-
tems, which must operate in increasingly congested spectral environments.
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6

Waveform Designs and Basic
Signal Processing in Radar
Systems

6.1 Overview of Radar Sensing Systems

A radar system refers to a transceiver system that transmits radiofrequency
(RF) electromagnetic (EM) waves toward a region of interest and then re-
ceives and detects these EM waves when reflected from objects in the region.
The history of the radar concept can be traced back to the late 19th century
when Heinrich Hertz began experimenting and demonstrated that transmit-
ted EM waves could be reflected by metallic objects. However, it wasn’t until
the early 20th century that the first radar system was invented by German
inventor Christian Hülsmeyer, demonstrating its capacity to detect ships in
fog and thereby avoid collisions. At present, radar systems are not only used
to detect targets such as vehicles, ships, and aircraft but can also sense ac-
tivities and soil composition. As a result, radar has become indispensable
not only in military applications but also in various aspects of social and
economic development (such as weather forecasting, resource detection, en-
vironmental monitoring, etc.) and scientific research (including astronomical
research, atmospheric physics, and ionospheric structure research). Different
radar systems employ EM waves with different frequency bands to utilize their
characteristics for various applications. Radar bands can range from 3 MHz
to 300 GHz, with the majority of radar systems operating between 300 MHz
and 35 GHz, as shown in Table 6.1. While the allocation shown in Table 6.1
follows the radar band allocation defined by the International Telecommuni-
cations Union (ITU), different government agencies, such as the Federal Com-
munications Commission (FCC) in the United States, provide more specific
regulations by limiting the range of frequencies for different radar applications.

The current frequency range used in automotive radar is typically between
24 and 100 GHz, with 24 GHz and 77 GHz being the mainstream frequen-
cies. Research has indicated that at higher frequencies, signal attenuation
increases, thereby limiting the radar’s detection range. The key functions of
radar include the detection, localization, and tracking of objects of interest. In
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TABLE 6.1
ITU radar band allocation.

FIGURE 6.1
Illustration of the general block diagram of radar systems.

automotive applications, these objects include vehicles, pedestrians, bicycles,
motorcycles, and obstacles found on or along the road. Radar systems gener-
ally consist of three main subsystems: the transmitter, the receiver, and the
signal processing subsystem, as depicted in Figure 6.1. The antenna serves as
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the external electromagnetic wave receiver, and the transmitter subsystem is
responsible for generating the transmitted signal. The ranging capability of
radar is primarily determined by the design of the transmitter, considering
factors such as the generated transmission power and associated costs. Addi-
tionally, the power radiated by the antenna must be adjusted based on the de-
tection requirements, further influencing the transmitter design. For instance,
the maximum detectable range is directly proportional to the fourth root
of the transmission power. This implies that to double the detectable range,
the power must increase by 16 times (24 times). The transmitter typically
comprises a waveform generator, an upconverter, and a power amplifier. Var-
ious waveforms used in radar systems will be discussed in later sections. The
main components of the receiver are the low-noise amplifier (LNA) and the
downconverter. While the role of the receiving subsystem is to capture known
reflected signals, it must also address clutter and other unwanted signals (such
as noise and interference) to maximize the signal-to-noise ratio (SNR) of the
desired signal. The signal processing subsystem utilizes various radar signal
processing algorithms to extract useful information from received signals, de-
termining target location, tracking, and target identification. Robust signal
processing techniques are necessary due to clutter and noisy environments.
However, constraints such as hardware resources and installation space limit
the complexity of achievable algorithms, especially in real-time automotive
and navigation applications. Thus, a comprehensive consideration is required
to balance various indicators.

The development of automotive radar sensors encounters challenges in
both hardware and software aspects. Effective signal processing algorithms
play a crucial role in the software domain, without which the utility of radar
sensors would be significantly curtailed. On the hardware side, considerations
such as size and weight are pivotal factors influencing whether Original Equip-
ment Manufacturers (OEMs) would embrace radar sensors as an option for
vehicle models. Since it is not mandatory to install radar sensors in vehicles
currently, minimizing sensor costs and the complexity of vehicle integration
becomes paramount. One of the radar’s advantages over other sensors is its
ability to be discreetly installed behind the bumper fascia without compro-
mising the vehicle’s aesthetics. While radar sensors enhance safety, preserving
the vehicle’s appearance is preferable to avoid additional design efforts. Conse-
quently, radar sensors must be designed to fit within the limited space behind
the bumper. For passenger cars, the width of the bumper is typically con-
strained to 40–50 centimeters. However, not the entire length of the bumper
can be utilized, and most vehicles target the bumper’s edge near the head-
lights. Therefore, radar designers must aim to make the sensor smaller than
the bumper’s width. Although weight imposes relatively minor restrictions
on radar, the prevailing trend is to reduce it to below 200 g to minimize in-
stallation costs. Calibration, tied to radar size, can be simplified based on
the radar’s dimensions. The subsequent challenge lies in radar waveform de-
sign and signal processing, as radar applications are broadly categorized into
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short-range, medium-range, and long-range. This led to the development of
short-range radar (SRR), medium-range radar (MRR), and long-range radar
(LRR). After delineating the radar application, the subsequent step is to define
constraints and resolutions for distance, velocity, and angle. This necessitates
waveform design, ultimately influencing the radar antenna’s design, which is
integral to the overall radar system design. Waveform design encompasses de-
termining the modulation scheme, frequency bandwidth, and the transmission
and reception of signals. Detailed elucidation on this subject will be provided
in subsequent articles. During the waveform design process, iterative deci-
sions must be made for radar waveforms, antenna configurations, and signal
processing algorithms until a combination satisfying the target application is
achieved. This iterative process is time-consuming, halting only when criti-
cal performance indicators are met, necessitating close collaboration among
hardware developers, software developers, and system testing personnel. Since
radar perception of targets invariably involves target tracking, striking a bal-
ance between available radar device resources and tracking performance to
select a suitable tracking algorithm is not a trivial task. This spans options
ranging from simple one-step predictive filters to complex nonlinear filters such
as extended Kalman filters and particle filters. These choices will be explored
in detail in subsequent sections.

6.2 Radar Detection Fundamentals

In most radar applications, radar systems must meet specific performance
criteria, encompassing parameters such as maximum range, range resolution,
maximum velocity, velocity resolution, angle coverage, and other specifica-
tions. Similarly, radar applications in automobiles require adherence to dis-
tinct performance benchmarks, with fundamental characteristics governed by
the radar equation. The antenna acts as the intermediary between the radar
system and the EM wave propagation medium. The radar equation delin-
eates the correlation among transmitted signal power, received signal power,
reflected target distance, reflected target characteristics, and antenna proper-
ties. This equation can be expressed as follows:

Pr =
PtGtGrλ

2σs
(4π)3R4

=
PtGtAeσs
(4π)2R4

, (6.1)

where Pr is the received signal power, Pt is the transmitted signal power. The
antenna characteristics are represented by the transmit gain Gt and receive
gain Gr. The parameter Ae = Grλ

2/4π is the effective aperture of the re-
ceiving antenna. The characteristics of the reflecting object at distance R are
represented by σs, known as the radar cross-section (RCS). RCS is an indica-
tor of the target’s ability to reflect radar signals in the direction of the radar
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receiver and is generally challenging to estimate. λ represents the wavelength
of the emitted electromagnetic signal, which can be considered constant for
any given radar system since the wavelength is only dependent on the fre-
quency of the electromagnetic wave. The radar equation, as outlined above,
can be expressed in terms of distance R as follows:

R = 4

√
PtGtAeσs
Pr(4π)2

. (6.2)

From the equation provided, it becomes apparent that if we assume all other
variables remain constant, the maximum detection range of the radar is di-
rectly proportional to the fourth root of the transmitted power. However,
when accounting for losses associated with signal reception, an estimate of
the maximum detectable range can be derived. To extend the coverage range
of the radar system, it’s essential to recognize that increasing transmitted
power arbitrarily is not a feasible solution. High power usage is not energy-
efficient, and adhering to the principle that lower energy consumption results
in greater stability, controlling high-power devices becomes challenging. Con-
sequently, achieving the reception of echo signals necessitates higher receiver
sensitivity. By further simplifying Eq. (6.1), we can assume that the transmit
gain and receive gain are equal and constant. Additionally, since λ is constant,
the main variables influencing received power become the transmit power, dis-
tance, and RCS. Moreover, if we define the radar equation using the minimum
detectable power of the receiver Smin, Eq. (6.2) can be expressed as:

R = 4

√
PtGtAeσs
Smin(4π)2

. (6.3)

The effect of propagation losses can be integrated into the radar equation to
better align with real-world scenarios. The minimum received power can be
articulated in relation to the SNR:

Smin = kT0BFnSNR. (6.4)

In this equation, kT0B denotes the thermal noise of an ideal Ohmic conductor,
where k represents the Boltzmann constant, T signifies the standard temper-
ature or absolute temperature (measured in Kelvin), and B stands for the
receiver bandwidth (expressed in Hz) or effective noise bandwidth. The noise
figure Fn elucidates the nonlinear characteristics introduced by the non-ideal
receiver circuit, and it is a dimensionless value defined as the ratio of the re-
ceiver input to output SNR. Additionally, the loss factor denoted by L can
be incorporated into the radar equation, resulting in the following revised
expression:

R = 4

√
PtGtAeσs

kT0BFnSNR(4π)2L
. (6.5)
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Furthermore, factors such as pulse accumulation and radar signal propa-
gation losses can be incorporated into the radar equation. However, for the
purpose of our discussion, Eq. (6.5) suffices to demonstrate the impact of losses
on the maximum detectable range. Depending on the functional requirements
of the radar, the radar equation can assume various forms, facilitating fine-
tuning for specific applications. For instance, it can be adapted for surveillance
radar and radar jamming systems. In most scenarios, crucial radar parameters
such as antenna gain, wavelength, and noise figure remain constant. Given
a fixed target distance (e.g., vehicles), determining the necessary transmit
power to double the detectable range is straightforward. Doubling the de-
tectable range affords the system or driver ample time to react and prevent
collisions. The distance is directly proportional to the fourth root of the trans-
mit power, denoted as R ∝ 4

√
Pt. Thus, to double the detectable range, we

require 2R ∝ 2 4
√
Pt =

4
√
16Pt. Consequently, with all other factors held con-

stant, increasing the transmit power by a factor of 16 is necessary. However,
it’s worth noting that simply boosting transmit power can impose significant
limitations on system requirements, as mentioned earlier.

In automotive applications, the radar equation serves to compute the max-
imum detectable distance. Nevertheless, estimating the RCS of a car poses a
challenge due to variations in shape, size, and texture among automotive tar-
gets. Consequently, accurately estimating the RCS of a vehicle remains a com-
plex task. According to the ITU, for automotive radars operating within the
77.5–78 GHz frequency range, the detection distance in meters is represented
as:

R = 4

√
PtG2

Aλ
2σtg

Smin(4π)3
. (6.6)

The provided formula assumes equal transmit and receive gains. Here, Pt

denotes the transmitter power (in watts), GA signifies the antenna gain, σtg
represents the effective target area, which is set to 1 m2, λ stands for the
wavelength, calculated as 3.859 × 10−3 m at a frequency of 77.75 GHz, and
Smin represents the receiver sensitivity (in watts). However, in practice, overall
system losses Ls, encompassing polarization losses, atmospheric propagation
losses, and antenna pattern losses, are commonly taken into account. In this
scenario, the maximum detection distance can be expressed as:

R = 4

√
PtG2

Aλ
2σs

Smin(4π)3Ls
. (6.7)

Alternatively, we can rewrite Eq. (6.5) in the form of Eq. (6.8):

R = 4

√
PtG2

Aλ
2σs

kT0BFnSNRmin(4π)3Ls
, (6.8)
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TABLE 6.2
Typical radar parameters within the 76–81 GHz frequency range.

where SNRmin is the minimum corresponding to the minimum received power.
For most automotive applications, typical radar parameters within the 76–81
GHz frequency range are as shown in Table 6.2.

6.3 Range and Doppler Estimation

It is reasonable to assume that the signal form of the linear frequency mod-
ulated continuous wave (LFMCW) radar transmission waveform manifests as
a frequency-modulated continuous sawtooth wave. Linear frequency modula-
tion implies that the frequency of the modulated signal changes linearly with
time. In the time domain, this manifests as a waveform with frequency lin-
early varying over time. Conversely, in the frequency domain, the transmission
signal’s frequency is directly proportional to time, as depicted in Figure 6.2.
Based on this, the transmission signal model of LFMCW can be represented
by the following formula:

st(t) = A cos
(
2π(f0t+ ut2/2) + ϕ0

)
, t ∈ [0, T ]. (6.9)
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FIGURE 6.2
Frequency-modulated continuous-wave (FMCW) signal: (a) frequency varia-
tion over time, (b) instantaneous chirp signals.

In this representation, the sweep bandwidth of the transmission signal is des-
ignated as B, the pulse width during transmission is denoted as T , and the
frequency modulation slope is expressed as B/T , identified as u. Consequently,
the phase of the single-cycle LFMCW radar transmission signal model can be
articulated in the following manner:

pt(t) = 2π(f0t+ ut2/2), t ∈ [0, T ], (6.10)

Range measurement in a stationary scenario: Under the assumption
that the distance from the stationary target to the radar is R, and the speed
of electromagnetic wave propagation in the air is c, the delay τ of the received
signal compared to the transmitted signal is given by τ = 2R/c. Hence, in the
ideal scenario, the model of the received echo signal by the receiving antenna
from the target can be represented as follows:

sr(t) = KA cos
(
2π(f0(t− τ) + u(t− τ)2/2) + ϕ0

)
, t ∈ [0, T ], (6.11)

where K is the attenuation loss during the transmission process. From the
aforementioned formula, it’s apparent that the echo signal maintains the same
signal form as the transmitted signal, albeit with a fixed time delay τ relative
to the transmitted signal. Consequently, the phase of the echo signal can be
expressed as:

pr(t) = 2π(f0(t− τ) + u(t− τ)2/2), t ∈ [0, T ]. (6.12)
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Combining the received echo signal sr(t) with the transmitted signal st(t)
and subsequently passing it through a low-pass filter yields a single-frequency
sinusoidal signal. Through the derivation of the formula, the phase expression
of the signal can be obtained as:

pt(t)− pr(t) = 2π(f0t+ ut2/2) + ϕ0 −
(
2π(f0(t− τ) + u(t− τ)2/2) + ϕ0

)
= 2πf0τ + 2πuτt+ πuτ2.

(6.13)
At this point, it is evident that the frequency difference between the transmit-
ted signal and the echo signal from a single target is a single-frequency signal.
According to the above formula, the frequency of the intermediate frequency
signal, fm, can be obtained as follows:

fm = uτ =
u2R

c
=

2BR

cT
. (6.14)

Sampling the intermediate frequency signal with an ADC, and then perform-
ing fast Fourier transform (FFT) to extract the frequency information from
the spectrum, assuming that the frequency corresponding to the peak value
of the FFT spectrum is fm, the distance information of the target can be
represented as follows:

R =
cTfm
2B

. (6.15)

Range measurement in the case of moving targets: Assuming that,
within the coverage area of the EM wave, a target is at a distance R0 from
the transmitting antenna at time t0, moving away from the antenna with a
radial velocity v, and considering the direction away from the antenna as the
positive direction, the model formula for the received echo signal from the
target remains consistent with that of a single target, as shown below:

sr(t) = KA cos
(
2π(f0(t− τ) + u(t− τ)2/2) + ϕ0

)
, t ∈ [0, T ]. (6.16)

However, the delay τ changes, as shown below:

τ =
2R0

c
=

2(R+ vt)

c
. (6.17)

At this moment, the phase of the intermediate frequency signal obtained
through heterodyning is as follows:

pt(t)− pr(t) = 2π(f0t+ ut2/2) + ϕ0 −
(
2π(f0(t− τ) + u(t− τ)2/2) + ϕ0

)
= 2πf0τ + 2πuτt+ πuτ2,

(6.18)
which is exactly the same as Eq. (6.13). The equation after substituting τ
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becomes:

pt(t)− pr(t) =
4πf0(R+ vt)

c
+

4πu(R+ vt)t

c
− 4πu(R+ vt)

c2

= 2π

(
2f0v

c
+

2uR

c
− 4uRv

c2

)
+ π

(
4uv

c
− 4uv2

c2

)
t2

+

(
4πRf0
c
− 4πuR2

c2

)
.

(6.19)

Clearly, according to the above formula, it can be seen that the intermedi-
ate frequency signal of the motion target’s signal remains a linear frequency-
modulated signal. Therefore, the frequency modulation slope um, carrier fre-
quency fm, and initial phase ϕm are as follows:

um =
4uv

c
− 4uv2

c2
,

fm =
2f0v

c
+

2uR

c
− 4uRv

c2
,

ϕm =
4πRf0
c
− 4πuR2

c2
.

(6.20)

Because the speed of light, c, is equal to 3× 108 m/s, the quadratic term of c
can be neglected. Approximately written as:

um =
4uv

c
− 4uv2

c2
∼ 4uv

c
,

fm =
2f0v

c
+

2uR

c
− 4uRv

c2
∼ 2f0v

c
+

2uR

c
,

ϕm =
4πRf0
c
− 4πuR2

c2
∼ 4πRf0

c
.

(6.21)

Then if the influence of the Doppler frequency on the intermediate frequency
signal frequency is neglected, then:

fm =
2uR

c
,

ϕm =
4πRf0
c

.

(6.22)

The approximate formula neglects the dependence of the intermediate fre-
quency signal frequency on the object’s velocity. In fast FMCW radar, this
influence is typically very small. Moreover, after completing the Doppler FFT
processing, it can be easily further corrected through Doppler phase compen-
sation. Hence, the range information can still be extracted from the interme-
diate signal, being similar to the stationary scenario. Also, from Eqs. (6.14)
and (6.22), we can also conclude that

Rmax =
fmc

2u
. (6.23)
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As a result, given a fixed analog-to-digital converter (ADC) capability, the
maximized estimation distance can be adjusted by adjusting frequency mod-
ulation slope u = B/T . Also, we have

∆f =
u2∆R

c
. (6.24)

The Fourier transform theory states that the observation window (T ) can
distinguish frequency components with intervals exceeding 1/T Hz. It can be
represented by the following formula.

∆f >
1

T
. (6.25)

Hence, with u fixed, the range resolution can be considered equivalent to the
radar system’s frequency resolution and we have

dres = ∆d >
c

2uT
=

c

2B
. (6.26)

From the above formula, it can be concluded that the wider the signal band-
width (B), the higher the range resolution. Therefore, adjusting the signal’s
bandwidth (B) also adjusts the radar system’s range resolution.

From the principle of range, it can be understood that emitting a single
chirp can provide distance information about an object. However, a single
chirp cannot achieve velocity measurement; at least two chirps need to be
emitted for velocity measurement. If multiple objects need to be detected, a
greater number of chirps is required, denoted as N . N chirps constitute a data
frame. Similar to how distance information is concealed in the intermediate
frequency, the velocity information of an object is concealed in the phase
difference of the signal. For two adjacent cycles of signals, due to the short
interval time T , and limited distance resolution, the peak position in the
distance dimension of the FFT spectrum within the two cycles remains almost
unchanged. However, because phase is more sensitive than distance, even small
changes in distance between cycles can cause a change in the initial phase of
the intermediate frequency signal. According to the properties of the Fourier
transform, the initial phase of the signal is reflected in the phase corresponding
to the complex value at the peak. By calculating the phase difference between
adjacent cycles, the velocity of the target can be obtained:

∆ϕ =
4π∆R

λ
=

4πvT

λ
, (6.27)

where T is the period interval time. So the velocity between two pulses is:

v =
λ∆ϕ

4πT
. (6.28)

Due to the phase difference inherent in velocity measurements, such measure-
ments are ambiguous. This kind of measurement is only unambiguous under
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certain conditions, that is, |∆ϕ| < π. Thus, we also have

vmax =
λ

4T
, (6.29)

as the maximized velocity estimation constraint. Similarly, according to
Fourier Transform theory, two discrete frequencies can only be distinguished
under specific conditions, that is ∆w = w2 − w1 > 2π/Nfft, where Nfft is the
number of FFT points. We also have

vres >
λ

2NfftT
, (6.30)

as the velocity resolution constraint.

6.4 Target Detection

After having an idea of how modern radar systems estimate the range and
Doppler velocity of a target, we aim to discuss another important operation
in current radar systems, target detection. The purpose of target detection is
typically to distinguish real target echo signals from noise and clutter. Thus,
if we skip this operation in the radar receiver, one can imagine that we will
get a lot of ghost targets from noise and clutter besides real targets to degrade
the radar system performance. To do so, the availability of statistical charac-
teristics of the target radar cross-section (RCS) can significantly enhance the
performance of target detection algorithms. In this direction, Swerling intro-
duced the Swerling model, which describes the statistical characteristics of an
object’s RCS using different degrees of freedom chi-square distributions. Take
the Swerling model I as an example, the reflection of targets in a single scan
has a constant RCS magnitude, but it varies with the scan according to the
PDF of a chi-square distribution with two degrees of freedom. The PDF is
given by the following expression:

f(σ) =
1

σavg
e
− σ

σavg , σ ≥ 0, (6.31)

where σavg is the average value of RCS. The Swerling model can be incorpo-
rated into the probability of target detection as follows. If the input signal to
the threshold detector consists of signal components with amplitudes A from
Gaussian noise with embedded variance ξ2, denoted as r(t), then the PDF of
r(t) can be represented as:

f(r(t)) =
r(t)

ξ2
I0

(
r(t)A

ξ2

)
e
− r(t)2+A2

2ξ2 , (6.32)
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where I0(.) is the first-type zero-order modified Bessel function. If only noise
is considered, then:

f(r(t)) =
r(t)

ξ2
I0

(
r(t)A

ξ2

)
e
− r(t)2

2ξ2 . (6.33)

For a given detection threshold Pthr, the false alarm probability Pfa is repre-
sented by the following formula:

Pfa =

∫ ∞

Pthr

f(r(t)) =
r(t)

ξ2
I0

(
r(t)A

ξ2

)
e
− r(t)2+A2

2ξ2 d(r(t)) = e
−P2

thr
2ξ2 . (6.34)

From the above formula, the threshold can be expressed in terms of the false
alarm probability as:

Pthr =

√
2ξ2 ln

(
1

Pfa

)
. (6.35)

From the PDF of r(t), we can define the detection probability Pd as:

Pd =

∫ ∞

Pthr

f(r(t)) =
r(t)

ξ2
I0

(
r(t)A

ξ2

)
e
− r(t)2+A2

2ξ2 d(r(t)). (6.36)

Many approximate values of Pfa and Pd are possible, and they can be ob-
tained from tables for a given required SNR. From an automotive perspective,
insights into the bump target model can be obtained from surveys of ground
vehicles. Ground vehicles consist of large trucks, heavy-duty trucks, medium-
sized cars, and medium-sized trucks as described above. The target behavior
of Swerling I ground vehicles has been shown to be the most common case
across all datasets and parameter variations, despite limited changes in angle.

In a practical scenario with the presence of noise and clutter, peak de-
tection is required to select valid targets from the received reflection signals.
The spectrum typically consists of multiple peaks. For automotive applica-
tions, peak detection becomes more challenging due to the reflection signals
received from roadside obstacles and ground reflections. Different strategies
can achieve varying degrees of effectiveness in performing peak detection tasks,
with distance-Doppler spectrum being commonly used in most cases. The
above expressions of Pd and Pfa are correct, but they become ineffective when
there is a mixture of different targets in the radar field of view. Moreover,
the reflection characteristics of targets are also influenced by factors such as
distance, angle, size, and shape of the target. Therefore, multiple unit thresh-
olds will be required to describe such scenarios. Adaptive detection thresholds
have long been a subject of research to address this challenge. To address the
issues associated with fixed threshold and multi-unit threshold approaches, we
have applied the constant false alarm rate (CFAR) method and achieved some
success. It should be noted that this method is not without cost (computa-
tional cost). In automotive radar applications, besides radar size, the increase
in computational cost is also a significant concern.
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The requirement of CFAR detection algorithms increases computational
speed and device memory with each processing, thus necessitating a trade-off
between performance and cost. In this section, we briefly outline some impor-
tant CFAR algorithms. Specifically, maintaining a constant false alarm rate
is desirable because detection algorithms are highly sensitive to the noise and
clutter that almost always exist in received radar echoes. Therefore, the over-
all goal of all radar detection schemes is to ensure that false alarms do not
fluctuate arbitrarily. During the detection process, each unit uses a threshold
to assess the presence or absence of a target. It is advantageous to be able to
detect both high and low fidelity targets while maintaining a constant false
alarm rate. This requires the use of adaptive thresholding methods, which
are commonly employed in modern radar systems. The most common forms
of basic CFAR methods include cell averaging CFAR (CA-CFAR), cell av-
eraging greatest of CFAR (CAGO-CFAR), and cell averaging least of CFAR
(CALO-CFAR). The CFAR principle dates back to the late 1960s. Methods
for addressing false alarm issues include implementing CFAR schemes, which
adjust the detection threshold as a function of the perceived environment.
Although there are numerous types of CFAR models, they typically revolve
around the concept of a “background average” (sometimes referred to as cell
averaging CFAR). This model estimates the interference (noise or clutter)
level from radar cells on either side of the range cell of interest and utilizes
this estimate to determine whether a target is present in the central cell of
interest. This process iterates through the range, progressively extracting one
cell at a time until all range cells have been examined. The basic idea behind
the model is that when noise is present, the cells surrounding the cell of in-
terest will contain a good estimate of the noise for that cell; assuming that
the noise or interference is temporarily uniform spatially. In theory, the model
produces a constant false alarm rate that is independent of the noise or clutter
level, as long as the noise follows a Rayleigh distribution within all distances
considered by the model. In the CA-CFAR method, as shown in Figure 6.3,
the threshold is calculated by taking the average power of the cells surround-
ing the cell under test (CUT) rather than using a single fixed value. The CUT
is the cell being examined to determine the presence or absence of a target. To
ensure that the CUT does not influence the threshold calculation, the cells im-
mediately surrounding the CUT are excluded from the calculation, and these
cells are referred to as the guard cells. For one-dimensional CFAR, the guard
cells are located to the left and right of the CUT, while for two-dimensional
CFAR, the guard cells form a ring around the CUT. To determine whether
a target exists in the CUT, the power in the CUT must be greater than the
power in all guard cells and also greater than the calculated average power
level. Other CFAR methods use different approaches to determine thresholds,
achieving different trade-offs. Nevertheless, their basic principles are very sim-
ilar to CA-CFAR, so they will not be individually introduced here. We refer
interested readers to ref. [120] for more details regarding the comparison of
different CFAR algorithms.
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FIGURE 6.3
Illustration of the CA-CFAR algorithm.

6.5 Common Radar Waveforms

In previous sections, we introduced different functionalities of radar systems,
mainly considering FMCW waveform. In summary, FMCW radar operates by
transmitting continuous waveforms with a linearly modulated frequency. This
modulation creates a frequency-swept waveform that is continuously trans-
mitted and received by the radar system. By comparing the transmitted and
received signals, FMCW radar can measure the range and velocity of tar-
gets based on the frequency difference, known as the Doppler shift. Moreover,
FMCW radar offers several advantages, including high-range resolution, which
allows for the accurate detection and localization of targets, particularly in
short-range applications. Additionally, FMCW radar is relatively immune to
interference and clutter due to its narrowband nature and linear frequency
modulation. This makes it well-suited for applications such as automotive
radar for collision avoidance, range measurement, and adaptive cruise control
systems.

Recently, research on orthogonal frequency division multiplexing (OFDM)
radar has become increasingly popular because such radar systems have great
potential to serve as the foundation of integrated sensing and communication
systems by providing both applications. From the communication standpoint,
this achieves high spectral efficiency as well as simple extraction of commu-
nication data. Meanwhile, from the radar standpoint, it enables efficient dig-
ital demodulation of the radar waveform. OFDM not only enables favorable
modulation for both applications, but also combines both functionalities via
a single waveform. This initially motivated research on OFDM radar. Cur-
rently, OFDM is often studied as a means for efficient implementation of
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digital, software-defined radar—independent of the communication aspect.
This concept differs from FMCW radar in terms of generating waveforms dig-
itally and performing demodulation in the digital domain. Broadly speaking,
this is equivalent to operating with arbitrary digitally generated waveforms
and matched filter-based processing at the receiver. For OFDM radar, this
large degree of flexibility in the waveform choice enables communication and
radar capabilities to be combined by embedding communication information
into the radar waveform. Specifically, OFDM radar, on the other hand, is
based on a technique widely used in communication systems for transmitting
data over multiple subcarriers. That is, the resultant signal model can be
expressed as:

x(t) =
M−1∑
m=0

N−1∑
n=0

D(mN + n)ej2πn∆ftrectT (t−mT ), (6.37)

where N represents the number of subcarriers,M is the number of consecutive
symbols evaluated, ∆f is the OFDM subcarrier spacing, T = Tcp+Tsym is the
OFDM symbol duration consisting of the cyclic shift (CP) duration Tcp and
the symbol duration Tsym, and D(n) is the modulated symbol. One can notice
that the signal model is similar to the OFDM symbol for communication
usage. Thus, the signal processing procedure in the receiver is also similar:
(1) remove CP, (2) conduct Fourier transform, and (3) perform element-wise
complex division by the transmit symbols to get the desired information. After
the above procedure, the information from the nth subcarrier of the mth
OFDM symbol can be expressed as:

ym,n = γe−j2πn∆fτej2πfcηmT + zm,n, ym,n = γe−j2πn∆fτej2πfcηmT + zm,n,
(6.38)

where γ is the radar channel gain, τ = 2R/c is the round-trip delay associated
with the range R, and η = 2v/c is the normalized Doppler shift associated
with the velocity v. Then, following the same procedure as FMCW radar by
taking a two-dimensional Fourier transform in the time-frequency domain will
provide the range and Doppler estimates to realize radar functionality. In the
above equation, the radar waveform is divided into multiple orthogonal sub-
carriers, each transmitting data simultaneously. By using multiple subcarriers,
OFDM radar can achieve high data rates and spectral efficiency. The block
diagram of OFDM radars is shown in Figure 6.4 for reference. Additionally,
the orthogonal nature of the subcarriers enables robustness against multipath
fading and interference, making OFDM radar well-suited for applications in
complex environments where traditional radar systems may struggle. OFDM
radar is particularly advantageous for applications requiring high-resolution
imaging, target classification, and radar-based surveillance, as it offers en-
hanced signal processing capabilities and improved performance in challeng-
ing scenarios. We recommend interested readers to refer to ref. [121] for the
detailed OFDM radar introduction, including signal model, signal processing
procedure, and achieved performance. In summary, while both FMCW radar
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FIGURE 6.4
Block diagram of the OFDM radars (copyright from ref. [122]).

and OFDM radar have their unique features and advantages, FMCW radar
excels in short-range applications with high-range resolution and interference
robustness, while OFDM radar offers high data rates and robust performance
in complex environments, making it suitable for applications requiring ad-
vanced signal processing and imaging capabilities.



7

MIMO Signal Processing in
Radar Systems

7.1 Overview of MIMO-Enabled Radar Systems

A radar with a single transmitter and receiver can measure the radial distance
to a target based on the flight time of the emitted electromagnetic waves. Al-
though it provides distance estimation capability, a single-transmitter, single-
receiver antenna typically cannot directly measure the angle of the target. The
first solution to enable angle estimation with a single antenna radar system
is to use antennas with very narrow beamwidths with mechanical rotating
scanning mechanisms. However, this method also comes with additional re-
quirements, such as requiring large antennas to achieve narrow beamwidths.
Additionally, rotating large antennas requires a significant amount of space
and cannot simultaneously cover the entire field of view. The second solu-
tion involves using a radar with multiple fixed antennas to obtain the angle
of the target, rather than rotating large antenna arrays. This type of radar
can utilize multiple antennas to detect the target without physical rotation.
Moreover, because all antennas can operate simultaneously, the refresh rate
of radar target detection is faster. We refer to this type of radar with multiple
transmitter and receiver antennas as multiple-input multiple-output (MIMO)
radar. When more antennas are used, the radar’s angular resolution improves.

In the previous chapter, we introduced the principle of radar operation
by transmitting electromagnetic waves from a transmitting antenna, which
are then reflected by the target and received by a receiving antenna. By cal-
culating the time delay between transmission and reception, the distance to
the target can be determined. In MIMO radar, to determine the angle of the
target, multiple antennas are used. Specifically, when the positions of each an-
tenna are slightly different, the time it takes to receive the reflected signal also
varies slightly. By analyzing the subtle time differences between each antenna,
the function of determining the target angle can be achieved. In practical ap-
plications, the phase of the received signal is more important than absolute
time differences because absolute time differences require extremely high time
resolution. Under the assumption that the difference in distance between an-
tennas to the target is less than the radar’s range resolution (i.e., near-field
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FIGURE 7.1
Illustration of the radar signal traveling distance in a 1× 2 radar system.

assumption), the distance traveled by the radar waveform is the sum of the
distance from the transmitting antenna to the target and the distance from
the target to the receiving antenna. The calculation is as follows:

RTx +RRx = 2RTx + d sin θ, (7.1)

as shown in Figure 7.1. Because the multiple receiving antennas are at different
distances from the transmitter, the radar waveform travels slightly different
distances, which can be used to solve for the target’s angle. Specifically, the
signal received from a target at a receiving antenna is in the form:

r(t) = As(t) exp

(
2πj

λ
d sin θ

)
, (7.2)

where A is the complex amplitude of the received signal, s(t) is the transmitted
signal. The exponential term represents displacement and is related to the
wavelength of the transmitted signal. As indicated by the equation above, by
comparing the phase difference of the signals received by two antennas, it is
possible to easily determine the angle of the target’s echo. This is known as the
phase difference angle measurement method. For example, for two antennas
spaced d apart from each other, the phase difference of the received signals is:

∆ϕ = exp

(
2πj

λ
d sin θ

)
. (7.3)

Therefore, the target angle θ can be easily obtained from the equation above.
In order to obtain a single solution, the spacing between array antennas must
be less than half of the wavelength λ

2 . Otherwise, due to the periodicity of
the sine wave, it is possible to obtain the same phase at two or more angles,
resulting in grating lobes. However, the aforementioned phase difference angle
measurement method can only be used to measure a single target angle, and
estimating multiple target angles requires a special design. Then, when it
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FIGURE 7.2
Illustration of the radar signal traveling distance in a 2× 2 radar system.

comes to the angle resolution, we are interested in the minimal angle ∆θ we
can distinguish after processing, that is:

∆ω =
2πd

λ
(sin (θ +∆θ)) >

2π

N
, (7.4)

where N is the number of received antennas from the fast Fourier transform
(FFT) properties. Utilizing the property

sin (θ +∆θ)− sin (θ)

∆θ
= cos (θ), (7.5)

from the concept of derivations, we obtain

2πd

λ
cos (θ)∆θ >

2π

N
. (7.6)

Thus,

θres = ∆θ =
λ

Nd cos (θ)
. (7.7)

In the best case (θ = 0 and d = λ
2 ), we have θres =

2
N , being a motivation to

employ multiple antenna radars for the improved angle estimation resolution.
Next, we aim to demonstrate other benefits of MIMO radar and several

widely used designs to fully utilize the spatial degree of freedom when we have
multiple transmit antennas and multiple received antennas at the same time.
We are now considering a similar antenna configuration to the one before.
However, a second transmitting antenna is placed at a distance of 2d from the
first transmitting antenna, as shown in Figure 7.2. When the signals between
Tx1-Rx1 and Tx1-Rx2 are exactly the same as before, signals between Tx2-
Rx1 and Tx2-Rx2 are also received. In fact, if we write down all four pairs of
transmitting-receiving antenna signal propagation distances, we cannot find
any difference in the length between the 2Tx-2Rx array with four antennas
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and the 1Tx-4Rx array with five antennas. This implies that their topolog-
ical structures are completely identical. Thus, if Tx2 is moved to the same
position as Rx2, the absolute signal propagation distance measured will be
exactly the same as the result obtained from the 1Tx-4Rx array, as shown in
Figure 7.3. From the above examples, we can draw an important conclusion:
by using two transmitting antennas, we can save the cost of one antenna. If
we further consider larger arrays with more antennas, the number of antennas
that can be saved will also increase accordingly. Moreover, each arbitrary pair
of transmitting antenna and receiving antenna combination in MIMO radar
can independently perform measuring tasks, while an antenna array with only
one transmitting antenna can only perform measurements equal to the num-
ber of receiving antennas. That is, in a MIMO radar with 32 transmitting
antennas and 32 receiving antennas, the total number of measurements is
32× 32 = 1024. This is equivalent to the measurement accuracy (angular res-
olution) that can be achieved by a radar with only one transmitting antenna
but 1024 receiving antennas. Note that to make the principle of MIMO radar
possible, we must assume that the receiving antennas can separate the signals
from different transmitting antennas. If they transmit the same waveform at
the same time, we will see superimposed received signals at the receiving end
that cannot be separated. In practice, transmitting antennas can ensure that
received signals can be separated by various means, such as transmitting sig-
nals at different times or frequencies, or using waveforms that are orthogonal
to each other. By doing so, receiving antennas can receive signals and sepa-
rate the signals from different transmitting antennas from each other, which
is known as MIMO radar waveform design. Also, in the example above, we
found that the performance of the 2TX-2RX radar array is similar to that of
the 1TX-4RX radar array, but if the antenna spacing is not specially designed,
there is no way to match as shown in the example above. While it is relatively
easy to analyze radar arrays with a single transmitting antenna, how to gener-
alize this process becomes very important in radar system designs. In practice,
to simplify the analysis, we often introduce the concept of virtual elements
to design radar arrays, as shown in Figure 7.4. The so-called virtual element
refers to an overlapping transmitting antenna and receiving antenna, and this

FIGURE 7.3
Illustration of the radar signal traveling distance in a 1× 4 radar system.
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antenna can only receive its own transmitted signal. For example, in the figure
below, we place a centered virtual element in the TX-RX pair at a distance of
d. When we consider the signal travel distance of the original TX-RX pair, we
can obtain 2rTX + d sin θ, which is exactly equal to the signal travel distance
from the virtual element to the receiver 2(rTX + (d/2) sin θ) = 2rTX + d sin θ,
we can use this property for radar array design.

7.2 Direction-of-Arrival (DOA) Estimation

In addition to achieving cost savings in antennas through equalization calcu-
lations, another advantage of MIMO radar is that it can provide degrees of
freedom inherent in multi-antenna systems to further enhance radar perfor-
mance. Below are several commonly used algorithms for angle estimation in
MIMO radar. We first consider an array radar system composed of M receiv-
ing antennas and K transmitting antennas. Then, the received signal can be
represented as:

x(t) = A(θ)s(t) + n(t), (7.8)

where x(t) ∈ CM×1 is the receiving signal, A(θ) ∈ CM×K = [a(θ1), ...,a(θK)]
is the direction matrix, s(t) ∈ CK×1 is the transmitting signal, and n(t) ∈
CM×1 is the noise vector. The elements of the direction matrix are composed
of the defined steering vectors, which are defined as:

a(θi) =
[
1, e−

j2πd sin(θi)

λ , ..., e−
j2πd(M−1) sin(θi)

λ

]
, (7.9)

where d is the antenna element spacing, using a uniform linear array (ULA),
λ is the wavelength of the propagated signal, and θi is the arrival direction

FIGURE 7.4
Illustration of the virtual element in MIMO radar system.
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(angle) of the signal from the ith transmitting antenna. In some algorithms
that require optimization of weights, it is necessary to consider the weighted
output of sensors. In this case, the weighted linear combination of sensor
outputs can be represented as follows:

y(t) =

M∑
m=1

w∗
mxm(t) = wHx(t), (7.10)

where w∗
m is the conjugate weighting of the mth receiving antenna.

Delay-and-sum method: The delay-and-sum method calculates the DoA
by measuring the signal strength at each possible arrival angle (scanning) and
selecting the arrival angles at power peaks. In the case of weights w, according
to Eq. (7.10), equal to the steering vector, it will introduce a power peak in the
beam. The highest power point corresponds to the estimated angle of arrival.
The output mean power of the beamformer using this method is given by:

PDS(θ) = E
[
|y(t)|2

]
= wHE

[
x(t)xH(t)

]
w = wHRw. (7.11)

Let s(t) arriving with steering angle θ0, of all the possible weight vectors,
the receiving antenna will have the biggest gain in the direction θ0, when
w = a(θ0). This is because w = a(θ0) aligns the phases of the components of
the arrival signal of θ0 in the sensors. In the DS method, a scan is performed
on all possible angles of arrival and the power measurement is performed on
all of them. The mean power of the steering angle is:

PDS(θ) = wHRw = aH(θ)Ra(θ). (7.12)

Hence, the arrival angles θ are determined by evaluating the power peaks.
Despite being computationally simpler, the width and height of the side lobes
limit the performance (i.e., discrimination capability) and effectiveness of the
DS method when signals from multiple directions/sources are involved, imply-
ing poor resolution. One way to improve it consists of increasing the number
of sensors, thus increasing the elements of vector a(θ), which increases the
delay-sum signal processing and complexity.
MVDR method: Capon’s minimum variance distortionless response or
MVDR is similar to the delay-and-sum technique, since it evaluates the power
of the received signal in all possible directions. The power from the DoA with
angle θ is measured by constraining the beamformer gain to be 1 in that di-
rection and using the remaining degrees of freedom to minimize the output
power contributions of signals coming from all other directions. The optimiza-
tion problem can be stated mathematically as a constrained minimization
problem. The idea is that for each possible angle θ, the power in the cost
function must be minimized w.r.t. w subject to a single constraint:

min
w

wHRw

subject to wHa(θ) = 1
(7.13)
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resulting in the MVDR received power solution:

PMVDR(θ) =
1

aH(θ)R−1a(θ)
. (7.14)

The disadvantage of this method is that an inverse matrix computation is
required, which may become poorly conditioned if highly correlated signals
are present. This method, however, provides higher resolution than the delay-
and-sum method.
Multiple signal classifier (MUSIC) DoA estimator: The steering vec-
tors corresponding to the incoming signals lie in the signal subspace; therefore,
they are orthogonal to the noise subspace. One way to estimate the DoAs of
multiple signal sources is to search through the set of all possible steering vec-
tors and find those that are orthogonal to the noise subspace. MUSIC DoA
estimator implements such a strategy. If a(θ) is the steering vector correspond-
ing to one of the incoming signals, then a(θ)HQn = 0, where Qn is the noise
subspace matrix. In practice, a(θ) will not be precisely orthogonal to the noise
subspace due to errors in estimating Qn. However, the function

PMUSIC(θ) =
1

aH(θ)QnQH
n a(θ)

, (7.15)

implies a very large value when θ is equal to the DoA related to one of the
signals. PMUSIC(θ) function is known as a pseudo “spectrum” provided by
MUSIC. In terms of implementation, the MUSIC-DoA first estimates a basis
for the noise subspace, Qn, and then determines the L peaks in Eq. (7.15);
the associated angles provide the DoA estimates.
Estimation of signal parameters via rotational invariance techniques
(ESPRIT): The ESPRIT-based DoA estimates are obtained neither from
nonlinear optimization nor from the search of any spectral measure. Hence,
it results in a computational complexity lower than the extrema-searching
methods, scanning for all possible angles of arrival. Specifically, the ESPRIT
operates under an array of antennas with M elements, divided into sensor
doublets as shown in Figure 7.5. Each sensor is distant d from its respective
pair, and each doublet is distant ∆ from one another. The doublets can be
separated to form 2 subarrays with m elements in each. The distance d may
be different from ∆ as shown in Figure 7.5(b), which makes it quite dynamic
in cases of non-uniform arrays. However, the most commonly used antenna
arrays possess sensors uniformly spaced, as depicted in Figure 7.5(a), being
the considered configuration in this section. The subarrays are represented by
x1 and x2. The output of the x1 and x2 subarrays is expressed as:

x1[n] =
L∑

l=0

sl[n]a(θl) + nx1
[n],

x2[n] =
L∑

l=0

sl[n]e
j 2π

λ ∆ sin (θl)a(θl) + nx2
[n],

(7.16)
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for n = 1, 2, ..., S samples. In the above equations, x1 and x2 arem×1 vectors,
nx1

and nx2
are noise vectors with the same dimensions as signal vectors. In

matrix form, Eq. (7.16) can be represented as:

x1[n] = As+ nx1
[n],

x2[n] = AΦs+ nx2
[n],

(7.17)

where Φ = diag{ej 2π
λ ∆ sin(θ0), ..., ej

2π
λ ∆ sin (θL−1)} is a L × L diagonal matrix

relating the signals received by the two subarrays, named the rotational op-
erator to present the extra delay caused by ∆ on the second subarray. The
total array vector can be further expressed as:

x[n] =

[
x1[n]
x2[n]

]
=

[
A
AΦ

]
s[n] +

[
nx1

[n]
nx2

[n]

]
= Qss[n] + n[n]. (7.18)

The Qs structure is exploited to estimate the diagonal elements of Φ without
knowing A. The Qs columns span the signal subspace of the concatenated
subarrays. Hence, by performing eigen-decomposition of R = E{x(t)xH(t)},
we will obtain Q = [QsQn] containing the signal subspace and noise subspace.
If Es is a matrix whose columns form a basis for the subspace of the signal
corresponding to the data vector x, then Qs and Es are related by a L × L
transformation T expressed by:

Es = QsT =

[
AT
AΦT

]
=

[
E1

E2

]
. (7.19)

FIGURE 7.5
Two examples of ESPRIT subarrays formation using M = 6 antenna ele-
ments: (a) Equidistant array with 3 equidistant identical doublets and d = ∆.
(b) Array with 3 non-equidistant identical doublets and d = ∆.
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It can be seen that the subspace of E1, E2, and A are the same. So E1, E2,
and A have the same range. As a result, a nonsingular L × L matrix Ψ can
be defined as:

E1Ψ = E2, (7.20)

hence Ψ can be defined by:

ATΨ = AΦT,

ATΨT−1 = AΦ,

Ψ = T−1ΦT.

(7.21)

As a result, the eigenvalues of Ψ must be equal to the diagonal elements of
the Φ, and T columns are the eigenvectors of Ψ. This is the key relationship
in the development of ESPRIT and their properties. The signal parameters
are obtained as nonlinear functions of the eigenvalues of the operator that
maps Ψ one set of vectors (E1) spanning an m-dimensional signal subspace
into another (E2). Then, since the L eigenvalues ϕl of Φ are calculated, the
angles of arrival can be computed as:

ϕl = ej
2π
λ ∆θl , l = 1, ..., L,

θl = arcsin

(
λ arg (ϕl)

2π∆

)
,

(7.22)

where arg (θ) = arctan
(

Im(θ)
Re(θ)

)
.

In conclusion, DOA estimation is a critical task in radar systems, and vari-
ous methods exhibit distinct advantages and limitations. The Delay-and-Sum
method, while simple and computationally efficient, suffers from low resolu-
tion and poor performance in environments with closely spaced signals or
high noise levels. In contrast, the MVDR method provides improved resolu-
tion and robustness by optimizing the beamforming process, though it requires
accurate knowledge of the signal covariance matrix and is computationally in-
tensive. The MUSIC method offers superior resolution and accuracy by lever-
aging eigenspace decomposition, making it effective even in scenarios with
closely spaced sources; however, it is computationally expensive and sensitive
to model mismatches and noise. Finally, the ESPRIT method, based on sub-
space decomposition and rotational invariance, achieves high-resolution DOA
estimation with lower computational complexity compared to MUSIC but is
constrained by its reliance on array geometry and assumptions of source co-
herence. Thus, while each method caters to specific operational needs, their
practical application depends on trade-offs between computational resources,
resolution requirements, and robustness to noise and environmental factors.
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7.3 Target Tracking

After obtaining target information using the methods introduced in the above
sections, we can further use filtering mechanisms to capture and track the
moving status of the targets, which is the main focus of this section. Being
the most used tracking solution, Kalman filter is a computationally efficient
recursive filter based on the theory of linear dynamic systems. It estimates the
state of a discrete-time linear dynamic system from noisy measurements. Since
its introduction, the Kalman filter has become a fundamental tool in modern
estimation and control systems, finding widespread applications across diverse
fields. In aerospace engineering, it is extensively used for navigation and guid-
ance, particularly in applications such as spacecraft attitude estimation and
autonomous drone control. In robotics, it enables real-time localization and
mapping (SLAM) by integrating noisy sensor data. The Kalman filter also
plays a crucial role in finance, where it is used to estimate market trends and
predict stock prices from noisy datasets. Moreover, in medical technology, it
aids in physiological signal processing, such as filtering electrocardiograms
(ECGs) or estimating metabolic rates from sensor data. Beyond these do-
mains, the filter is widely employed in signal processing, weather forecasting,
and even augmented reality systems, showcasing its versatility in fusing noisy
measurements and predicting system states in dynamic environments. Its abil-
ity to provide optimal estimates in linear systems with Gaussian noise makes
it indispensable in many modern technologies.

Specifically, Kalman filter considers a discrete-time linear dynamic system.
The process model is described as follows:

x(k) = F(k − 1)x(k − 1) +G(k − 1)u(k − 1) + v(k − 1), (7.23)

where x(k) is the state vector at time k, F(k−1) is the state transition matrix,
G(k−1) is the input control matrix, u(k−1) is the control input, and v(k−1)
is zero-mean Gaussian white noise. The covariance matrix of the process noise
at time k is defined by E{v(k)v(k)T } = Q(k). In the case that the state
vector x(k) cannot be observed, we further define the measurement equation
as follows:

z(k) = H(k)x(k) +w(k), (7.24)

where z(k) is the measurement vector at time k, H(k) is the observation ma-
trix, andw(k) is the zero-mean Gaussian white noise. Similarly, the covariance
matrix of the measurement noise at time k is defined by E{w(k)w(k)T } =
R(k). In the scenario of automotive radar processing, the ground truth of
x(k) remains unknown and can only be observed. Thus, z(k) is obtained from
measurements of target states, namely distance, velocity, and DOA. For fil-
tering and tracking purposes, the state vector x(k) includes the position, ve-
locity, and acceleration of the target in both range and azimuth directions,
correspondingly. The Kalman filter operation requires prior P(k|k − 1) and
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posterior P(k|k) estimates of the error covariance matrix based on respective
state estimates. The prior state estimate x̂(k|k−1) is the estimate of the state
at time k based solely on available measurements up to time k − 1, without
considering the current measurement z(k). On the other hand, the posterior
state estimate x̂(k|k) is the estimate of the system at time k taking into ac-
count the current measurement z(k). Based on these values, the estimated
error covariance can be further expressed as follows:

P(k|k − 1) = E
[
(x(k)− x̂(k|k − 1))(x(k)− x̂(k|k − 1))T

]
,

P(k|k) = E
[
(x(k)− x̂(k|k))(x(k)− x̂(k|k))T

]
.

(7.25)

Below, we introduce the typical procedure to execute the Kalman filter, in-
cluding (i) initialization, (ii) prediction, and (iii) update steps.
Initialization: In common automotive radar scenarios, the first step is to
initialize F,G,Q,H,R. Then, the state estimate and covariance estimate can
be computed as x̂(0) and P(0) for further processing.
Prediction: Based on the initial value, the prediction step projects the state
and its uncertainty forward in time using the system model. Specifically, the
prior estimation of status can be expressed as:

x̂(k|k − 1) = F(k − 1)x̂(k − 1|k − 1), (7.26)

and for error covariance as:

P(k|k − 1) = F(k − 1)P(k − 1|k − 1)F(k − 1)T +Q(k − 1). (7.27)

Update: Then, the update step refines the predicted state by incorporating
the measurement. In this step, a critical parameter, Kalman gain, will be
computed to determine the weight of the measurement in updating the state.
Assuming the measurement z(k) is available, the Kalman gain is calculated
as follows:

K(k) = P(k|k − 1)H(k)T
(
H(k)P(k|k − 1)H(k)T +R(k)

)−1
. (7.28)

Then we can update the posterior estimation of status as:

x̂(k|k) = x̂(k|k − 1) +K(k)z(k) +H(k)x̂(k − 1|k − 1), (7.29)

and for error covariance as:

P(k|k) = P(k|k − 1) +K(k)H(k)P(k − 1|k − 1). (7.30)

After multiple iterations, the error covariance P will converge to the mini-
mized posterior error covariance with optimal Kalman gain K(k) to achieve
automotive tracking. For interested readers, one can refer to refs. [123, 124]
for the detailed derivations.

Although widely deployed in automotive radar tracking applications, the
Kalman filter algorithm discussed above has several drawbacks when applied
to radar measurements:
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Linearity assumption: The above discussion is based on the assumption
that the underlying processes are linear. The Kalman filter provides accurate
estimates only for linear process and measurement models. In nonlinear sce-
narios, it may not achieve optimal estimation. To set a linear environment,
we assumed a constant velocity model for our process, which may not hold
true in practical applications where both process and measurement models
are nonlinear.
Gaussian noise assumption: Another assumption that both process and
measurement noise are Gaussian may not always hold true. While the Kalman
filter works well when noise has known statistical properties, such as white
noise, its performance deteriorates when dealing with colored noise or when
the system has uncertainties. Moreover, the Kalman filter may struggle to
effectively track rapidly accelerating or decelerating targets, highlighting the
need to improve upon the underlying assumptions.

To address these limitations, various extensions and modifications to the
Kalman filter, such as the extended Kalman filter (EKF) or unscented Kalman
filter (UKF), have been proposed. These approaches aim to relax the linearity
assumption and handle non-Gaussian noise characteristics more effectively,
thereby enhancing the filter’s performance in real-world scenarios. The EKF
models the state transition and measurements as differentiable functions of
the state. These functions are not explicitly linear, as shown below:

x(k) = f (x(k − 1),u(k)) + v(k), (7.31)

z(k) = f (x(k)) +w(k). (7.32)

In the above equation, instead of using a linear state transition matrix F(k),
more general functions f (x(k − 1),u(k)) are utilized. The assumptions about
noise are similar to those in the Kalman Filter. The prediction and update
steps of the EKF are carried out as follows: (1) Prediction: Perform prior
estimation for status as:

x̂(k|k − 1) = f (x̂(k − 1|k − 1),u(k)) , (7.33)

and for error covariance as:

P(k|k − 1) = F(k)P(k − 1|k − 1)F(k)T +Q(k − 1), (7.34)

where F(k) is defined as

F(k) =
∂f

∂x

∣∣∣∣
x̂(k−1|k−1)

. (7.35)

(2) Update: Assuming the measurement z(k) is available, the Kalman gain
is calculated as follows:

K(k) = P(k|k − 1)H(k)T
(
H(k)P(k|k − 1)H(k)T +R(k)

)−1
, (7.36)
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where H(k) is defined as

H(k) =
∂h

∂x

∣∣∣∣
x̂(k|k−1)

. (7.37)

Then we can update the posterior estimation of status as:

P(k|k) = P(k|k − 1)−K(k)H(k)P(k − 1|k − 1). (7.38)

The optimal Kalman gainK(k) in the above formula also minimizes the poste-
rior error covariance, and detailed derivations can be found in refs. [125,126].
Similar to the Kalman filter case, posterior processing can be applied to x̂(k|k)
as well to obtain smoothed estimates. Although already providing improved
results than Kalman filter by introducing nonlinearity, EKF still faces several
issues for further improvements:
Sub-optimal on MMSE: The state estimation provided by Kalman filter is
not optimal in terms of minimum mean square error (MMSE). There might
be other estimation techniques that yield better results in terms of error min-
imization.
Sensitivity to initial state estimation: Incorrect initial state estimation
can lead to filter divergence, where the estimated state diverges significantly
from the true state over time.
Computational complexity: For many applications, especially in automo-
tive contexts, the computational complexity associated with Jacobian matrix
calculations can be high. This computational burden may become prohibitive,
particularly in real-time applications where rapid processing is required.
Gaussian assumption: The Gaussian assumption for both process and mea-
surement models may not always hold true in real-world scenarios. Extended
Kalman filters’ performance might be limited when dealing with non-Gaussian
noise or when the system deviates significantly from the assumed Gaussian
distribution. To address these limitations, researchers have developed various
extensions and alternatives to the EKFs, such as the UKF and particle filter.
These techniques aim to mitigate the shortcomings of the Kalman filters and
improve its performance in diverse and challenging environments.

For interested readers, we refer to this survey paper [127] for more details
and recent developments in this direction.

7.4 MIMO Radar Waveform Designs

As discussed in the previous section, waveform diversity empowers MIMO
radar with tremendous potential, offering greater flexibility in waveform pa-
rameter design and corresponding processing methods compared to traditional
radars. However, the waveform design process of MIMO radar signal pro-
cessing is also more complex than that of traditional radars. This section
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will introduce the primary forms and application characteristics of orthogonal
waveforms in MIMO radar. In an orthogonal waveform MIMO radar system,
let the transmitted waveforms from each channel be s1(t), s2(t), ..., sNt(t). If
the waveforms satisfy the orthogonality condition:∫

sm(t)s∗n(t)dt =

{
E if m = n,

0 if m ̸= n,
(7.39)

where E represents the waveform energy, the transmitted waveforms are con-
sidered mutually orthogonal. When the orthogonality condition is met, the
received signals can be separated through matched filtering at the receiver,
resulting in a data matrix that preserves the angular information of the tar-
get relative to the transmitting array. This property forms the foundation for
the improved angle estimation accuracy in centralized MIMO radar systems.
Specifically, methods such as frequency division, code division, or a hybrid
combination of frequency and code division can be employed to construct or-
thogonal waveforms in MIMO radar. By modulating the same signal envelope
onto several uniformly spaced carrier frequencies, frequency-division stepped-
frequency orthogonal waveforms for MIMO radar can be constructed. In this
case, the detection signal for the nth transmission channel can be expressed
as:

sn(t) = u(t)ej2π(f0+n∆f)t, n = 0, 1, . . . , Nt, (7.40)

where f0 is the starting frequency, ∆f is the frequency interval between trans-
mission channels, and u(t) represents the envelope signal. If the envelope signal
has a bandwidth B, the total bandwidth of the frequency-division orthogonal
signals is:

Btotal = B + (M − 1)∆f. (7.41)

The orthogonality of the waveforms depends on the frequency interval ∆f ;
generally, the larger ∆f , the better the orthogonality, but also occupying in-
creasingly more system bandwidth. The envelope signal u(t) can take various
forms, such as linear frequency modulation (LFM) signals, nonlinear frequency
modulation signals, pseudo-random phase-coded signals, or other possible sig-
nal types.

If the same carrier frequency is used across different transmission channels
but the waveform codes are mutually orthogonal, code-division orthogonal
signals for MIMO radar can be constructed. In this case, the modulation
envelope of the nth transmission channel can be expressed as:

un(t) =

√
1

K

K−1∑
k=0

ejϕn,k rect

(
t− kTz
Tz

)
, (7.42)

where rect(.) is the rectangular window function, Tz is the width of a single
code element, andK is the length of the coded signal. To ensure orthogonality,
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the following condition must be satisfied:

K−1∑
k=0

ejϕm,ke−jϕn,k =

{
K, m = n,

0, m ̸= n.
(7.43)

Here, ϕn,k represents the phase of the k th element in the code of the n th chan-
nel, and its value can fall within the range [0, 2π). Depending on the values of
ϕn,k, the coded signals can be binary-phase, quadrature-phase, octal-phase, or
higher-order discrete phase codes, collectively referred to as orthogonal uni-
form discrete phase-coded signals. Alternatively, if ϕn,k takes arbitrary values
in [0, 2π), the resulting signals are called orthogonal continuous phase-coded
signals. The design of code-division orthogonal waveforms often employs op-
timization techniques, with criteria such as minimizing peak sidelobes or the
total energy of auto-correlation and cross-correlation sidelobes. Common op-
timization methods include simulated annealing, genetic algorithms, and se-
quential quadratic programming. Additionally, greedy algorithms and other
local search methods have been used to further improve the performance met-
rics of the coded signals.

In addition to orthogonal frequency-division and code-division signals,
other specialized signal types, referred to as hybrid signals, have also been
investigated. Taking the coded-linear frequency modulation (coded-LFM) sig-
nal as an example, it replaces the simple pulse in orthogonal coded signals with
a linear frequency modulation waveform, resulting in a fundamental hybrid
signal waveform. It can be expressed as:

un(t) =

√
1

KTz

K−1∑
k=0

(
rect

(
t− kTz
Tz

)
ejπu(t−kTz)

2

)
ejϕn,k . (7.44)

Here, rect(·) represents the rectangular window function, Tz is the width of
a single code element, and K is the length of the coded signal. The term
ejπu(t−kTz)

2

introduces the linear frequency modulation component, while
ejϕn,k applies the phase coding to each element. In addition to phase-coded
linear frequency modulation hybrid signals, other forms of hybrid signals
have been explored, such as frequency-division phase-coded signals, discrete
frequency-coded linear frequency modulation signals, and more complex hy-
brid signal formats. These advanced waveforms provide increased flexibility
and improved performance in various MIMO radar applications.

Besides the orthogonal MIMO radar waveform we discussed above, MIMO
radar waveform can also be further designed to achieve different goals. For
example, by introducing the concept of beamforming, MIMO radar waveform
can be designed to minimize the beam pattern matching error criterion. This
involves designing the transmit or receive beam pattern to approximate a tar-
get beam pattern as closely as possible. As a result, the resulting weight vector
minimizes the error between the designed beam pattern and the desired beam
pattern, ensuring better spatial resolution and interference rejection. On the
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other hand, minimizing the integrated sidelobe-to-mainlobe ratio can also be
treated as the optimization goal for the design of MIMO radar waveform. This
approach focuses on reducing the energy of the sidelobe region relative to the
energy of the mainlobe, thereby improving the spatial resolution and suppress-
ing interference. Thus, by minimizing this criterion, the beam pattern achieves
a sharper mainlobe with suppressed sidelobes, enhancing target detection and
interference rejection capabilities. If the purpose of waveform design in radar
systems is to maximize the target detection probability while maintaining a
fixed false alarm probability. The maximum signal-to-interference-plus-noise
ratio (SINR) criterion can be used to do so. It ensures that the desired signal
is optimally received in the presence of interference and noise, leading to bet-
ter detection, estimation, and communication quality. For interested readers,
we refer to refs. [128–131] for the representative works in this direction.



8

Interference Mitigation in
Radar Systems

8.1 Overview of Interference Mitigation Techniques in
Radar Systems

The electromagnetic spectrum, as discussed in previous chapters, is a vital
resource shared by communication and sensing systems, thereby constraining
system capacity in both domains. As a result, future sensing environments will
increasingly encounter complex electromagnetic interference due to the coex-
istence of radar and communication applications. To address these challenges,
the concept of cognitive radar, characterized by a closed-loop architecture en-
compassing transmission, reception, and processing was proposed recently for
next-generation radar designs with interference mitigation capabilities. Unlike
conventional radar systems, cognitive radar can dynamically adapt its trans-
mission waveforms and reception processing methods in response to changes
in the external environment, allowing it to function effectively within more
intricate electromagnetic conditions. In recent years, advancements in cogni-
tive radar technology and artificial intelligence have enabled radar systems to
acquire cognitive and intelligent evolutionary capabilities. This progress has
given rise to a novel paradigm referred to as cognitive intelligent radar. This
paradigm is distinguished by a closed-loop architecture with self-evolution and
learning capabilities. According to ref. [132], cognitive intelligent radar incor-
porates adaptive environmental sensing, flexible transmission and reception
design, transceiver co-design, and resource scheduling. Such features empower
cognitive intelligent radar to operate efficiently in complex and dynamic elec-
tromagnetic countermeasure environments. A brief overview of the underlying
radar transmitter and receiver designs is presented below.

Detect-and-avoid at the transmitter: This primarily involves lever-
aging prior knowledge of radar targets and electronic interference, historical
radar echo data, and real-time cognitive information of the underlying envi-
ronment to optimally design the radar’s transmission waveforms, beams, and
power at the transmission end. In a complex electromagnetic countermeasure
environment, this enhances the radar’s anti-interference capabilities. Specif-
ically, from the game-theoretic perspective of radar versus interference, the
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radar’s advantage lies in its ability to control the transmission. Thus, cogni-
tive transmission is one of the core components of cognitive intelligent radar,
and its essence lies in fully utilizing active control over transmission through
various strategies such as agility, randomness, deception, and collaboration,
thereby enhancing the radar’s adaptability and survivability in complex elec-
tromagnetic environments.

Detect-and-suppress at the receiver: On the other hand, at the radar’s
reception end, cognitive optimization design is also implemented to filter the
received echo signals across the spatial, temporal, frequency, and polarization
domains. The core objective is to prevent interference energy from mixing
with the radar target echoes as much as possible, providing relatively clean
echo signals for subsequent signal and data processing. Depending on specific
application needs, cognitive transmission, and cognitive reception can be op-
timized as an integrated design, such as through joint design of transmission
waveforms and reception filters [133], to further enhance the radar system’s
anti-interference and anti-clutter capabilities.

In the above discussions, one can notice that interference sensing (i.e., in-
terference identification and estimation) plays an important role in enabling
consequent transmitter and receiver operations effectively. Moreover, besides
the solely transmitter or receiver operations, centralized coordination of one
or several radar transceivers, including transceiver co-design, and resource
scheduling, is also a promising way to enhance radar interference mitigation
capabilities. In the following discussions, we will elaborate on the basic idea of
each scheme and provide several representative works using different schemes
to demonstrate its practical usage. For the recent development in this direc-
tion, we refer interested readers to refs. [132,134–136] for more details.

8.2 Interference Identification and Estimation

Interference sensing involves the estimation of interference characteristics to
provide essential informational support for anti-interference decision-making.
According to ref. [132], they can be categorized into shallow and deep features
based on the dimensionality of these characteristics. Shallow features are phys-
ically interpretable characteristics, such as interference spectra, Doppler shifts,
and intra-pulse modulation properties. In contrast, deep features are seman-
tic representations within a high-dimensional feature space generated by deep
neural networks, typically lacking direct physical interpretability. This chapter
focuses exclusively on shallow features, which are estimable using traditional
statistical methods. The exploration of deep features will be addressed in
Chapter 15. Shallow feature estimation primarily employs techniques such as
probabilistic statistics, time-frequency transformations, and higher-order ma-
trix transformations. These methods facilitate the extraction of physical in-
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terference characteristics, enabling the identification of interference types and
the estimation of parameters across various modulation domains, including
time, frequency, and Doppler domains, thereby achieving effective interference
characterization. For example, regarding range deception interference identi-
fication, refs. [137, 138] have analyzed the generation mechanisms of range
deception interference signals, revealing that flaws in digital radio-frequency
memory (DRFM) jamming technology can cause frequency shifts in the fre-
quency domain center of range deception interference signals, providing a ref-
erence for identifying this type of interference. Follow-up literature [139] also
developed a mathematical model for deception interference and proposed an
interference type identification method that utilizes bispectral features.

When it comes to interference parameter estimation based on shallow fea-
tures, this mainly involves using advanced matrix transformation techniques,
such as short-time fractional Fourier transform, Radon transform, and Hilbert
transform, to extract features of interference across time, frequency, and mod-
ulation domains, thus enabling the estimation of typical interference param-
eters. A representative work in this direction is ref. [140]. In this work, the
interference caused by different modulated radar signals can be identified.
Then, the interference cancellation can be performed for improved radar es-
timation capability in an interfered environment. Specifically, the normalized
transmitted signal of a single chirp s(τ) can be expressed as:

s(τ) = cos[(w0 +∆wτ)τ ], (8.1)

where τ is the relative time within the current chirp, w0 is the fundamental
angular frequency and ∆w is the angular frequency deviation. On the receiver
side, by mixing the transmitted signal of the m the frequency ramp and the
received signal x(t), we obtain

ym(τ) = x(mT + τ)s(τ), (8.2)

where T is the duration of a single chirp. Furthermore, a low-pass filter is often
applied to eliminate high-frequency mixing components, being expressed as:

yLPm (τ) = h(τ)ym(τ), (8.3)

where h(τ) is the frequency response of the low-pass filter with cut-off fre-
quency wc. In an interference-free environment, this term can be further ex-
pressed as:

yLPm (τ) =
α

2
cos(∆w

2r

c0
+ ϕm), (8.4)

where α << 1 is the attenuation term, r is the distance, and ϕm is a constant
for a stationary target and will reassemble the Doppler shift for a moving
target. By sampling N times per ramp on the processed signal yLPm (τ), a
digital signal A ∈ CM×N can be obtained and each element can be expressed
as:

Am,n = yLPm (τ)(
nT

N
). (8.5)
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This matrix A represents a spectrogram or time-frequency image, providing
important information for radar parameter estimations. However, if we fur-
ther consider the practical environment with interference, this time-frequency
image will be ruined. Specifically, assuming an interference signal xI(t) with
changing frequency wI(t), the received signal can be expressed as:

xI(t) = cos[wI(t)t]. (8.6)

After the low-pass filter, the interference below cut-off frequency wc will ap-
pear and corrupt the time-frequency image Am,n, being expressed as:

|w0 +∆w
nT

N
− wI(mT +

nT

N
)| < wc. (8.7)

In this work, the authors notice that the interference caused by specific mod-
ulations shows a special pattern, motivating the authors to employ image
processing schemes for detecting and removing those interference signals. To
do so, the first step is to convert the time-frequency image to a typical image
by means of quantization or other signal pre-processing methods. For exam-
ple, by adjusting the scaling factor β and offset γ, the below conversion rule
can be used to fulfill this need, expressed as:

I = β log10 |A|+ γ. (8.8)

After this step, traditional image processing methods can be employed to
perform pattern recognition purposes. Four example images containing the
interference of one or two sensors, respectively, are shown in Figure 8.1. In
this work, a maximally stable extreme regions (MSER) algorithm is employed
to do so and shows good performance in both simulation and real tests. In the
follow-up works, different image processing algorithms are also employed to
further improve the interference identification performance in different scenar-
ios. Notably, this is a pioneering work that considers the radar spectrogram
as an image, and this concept is still widely used when introducing advanced
learning-based achievements into radar signal processing domains. We will
discuss this in Chapter 15.

After the success of the above work, researchers also aim to extend a simi-
lar concept to handle more types of radar interference signals, including inter-
rupted sampling repeater (ISR) interference [141], chopping and interleaving
(C&I) interference [142], and smeared spectrum interference [143]. Compared
to full-pulse repeater interference, ISR interference has advantages such as
minimal delay, fast response, and the ability to form false targets before the
actual target, making it widely used. Especially, ISR interference has been im-
proved since it was first proposed to overcome its original limitations, making
it a powerful jamming attack to interfere with the target radar reception [144].
For example, in ref. [144], a novel ISR interference method based on joint sub-
section frequency shift and two-phase modulation is proposed. This approach
leverages the coherent superposition of jamming signals and strategic modu-
lation to enhance the interference effect for both linear-frequency-modulated
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FIGURE 8.1
Examples of signals disturbed by FSK/LFM interference (copyright from ref.
[140]).

(LFM) and phase-coded signals. Simulation results demonstrate that this
joint modulation strategy effectively mitigates the inherent defects of Inter-
rupted Sampling Repeater interference, enabling the formation of more robust
and versatile jamming effects. This improvement enhances the ISR interfer-
ence’s applicability in countering advanced radar systems and modern anti-
jamming measures. To tackle this type of interference, ref. [145] analyzed the
cross ambiguity function (CAF) of ISR interference and proposed a Doppler
compensation-based ISR interference identification method. Ref. [146] intro-
duced an estimation method based on the short-time fractional Fourier trans-
form, enabling the estimation of interference parameters such as the number
of slices, slice width, and frequency modulation slope in ISR interference. Ref.
[141] introduces an interference suppression method for ISR jamming based on
the singular spectrum entropy function (SSEF), integrating principles of singu-
lar value decomposition (SVD) and information entropy theories. The method
begins with an adaptive multi-scale segmentation (AMS) approach to enhance
salient signal characteristics while smoothing similar features. AMS employs
segmentation criteria based on average segment energy and minimum seg-
mentation constraints, leading to the creation of an improved delay embedded
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matrix. Singular spectrum extraction is performed using SVD, followed by the
introduction of SSEF, a novel characteristic derived from the Shannon entropy
model, addressing the limitations of traditional singular spectrum analysis and
entropy-based methods under low signal-to-noise ratio (SNR) conditions. The
SSEF is then utilized in an entropy-based threshold detection process to filter
and suppress interference. Experimental results demonstrate that this method
significantly improves target detection probability and peak-to-sidelobe ratio
(PSR) after pulse compression, validating its robustness against noise and jam-
ming, particularly under low SNR scenarios. Ref. [147] also examined the char-
acteristics of the CAF after matched filtering of the interference and proposed
a parameter estimation method based on radon transform and least squares.
Ref. [148] proposes an anti-jamming method using minimum variance distor-
tionless response (MVDR) beamforming, which leverages small-sample pure
jamming signals for covariance matrix estimation. The method begins with
time–frequency analysis of the one-dimensional range profile of the radar echo,
enabling the identification of target and jamming signals on a two-dimensional
range–frequency graph based on their time–frequency differences. Pure jam-
ming signals are isolated through snapshot sampling in this graph. Given the
limited snapshot data, a covariance matrix for pure jamming is reconstructed
using an iterative adaptive approach (IAA). This matrix serves as training
data for the MVDR beamformer, which effectively suppresses the main-lobe
Interrupted Sampling Repeater interference. The proposed approach is vali-
dated through simulations and measured results, demonstrating its effective-
ness in mitigating main-lobe Interrupted Sampling Repeater Jamming. These
methods are generally applicable to relatively ideal interference environments
to identify an interference based on “typical” interference behaviors. That
being said, when it comes to increasingly difficult scenarios, shallow feature-
based interference identification and estimation face severe challenges and the
performance will drop significantly. For example, when radar simultaneously
receives different types of interference, the aforementioned “typical” interfer-
ence behavior of each type of interference might no longer exist, and thus it
is very challenging to still identify the underlying interference based on those
shallow features. Additionally, other imperfections, such as clutter, can fur-
ther complicate interference parameter estimation. The above two constraints
of traditional radar interference identification and estimation motivate the in-
troduction of advanced learning-based achievements, and we will talk more
about this in Chapter 15.

8.3 Detect-and-Avoid at the Transmitter

After identifying the interference type and estimating interference parame-
ters, subsequent interference handling mechanisms can be performed to realize
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interference mitigation. In cognitive intelligent radar systems, anti-interference
at the transmitter primarily relies on the real-time perception of interference
direction, power, modulation patterns, and retransmission rules to optimally
design waveforms and beams. This enhances the radar’s anti-interference de-
tection capabilities in complex electromagnetic environments. For example,
after identifying interference, a cognitive anti-interference strategy can be em-
ployed to select or adaptively generate a waveform from the waveform library
to effectively suppress the interference. In this direction, ref. [149] proposed
a comprehensive waveform optimization design framework for cognitive radar
anti-interference, which maximizes mutual information under constraints of
SNR, energy, and power spectral density, balancing output SNR and target
parameter estimation performance. Similarly, several methods are proposed
to suppress interference based on specialized waveform design. For known
noise amplitude modulation interference, a joint design method of transmit-
ted waveforms and receiving filters based on the suppression of interference
and sidelobes, improves target detection performance by minimizing target
parameter estimation errors. Moreover, we can further approach this from the
ambiguity function perspective, proposing a two-dimensional modulation anti-
jamming optimization criterion, solved using alternating iteration methods to
suppress interference in range and Doppler domains.

Ref. [150] is a great work to show an example of cognitive transmitter de-
sign in radar systems for anti-interference purposes. Specifically, by cognitively
adapting the chirp bandwidth and transmission time of the radar transmitter,
the FMCW radar detection performance can be maintained even with the ex-
istence of interference. To elaborate, a FMCW transmit signal sT(t) is a train
of P chirps spaced by the interval Tp, being expressed as:

sT(t) =
P−1∑
p=0

sT,p(t− pTp), 0 ≤ t ≤ PTp. (8.9)

In the receiver end, the received signal can be expressed as below by consid-
ering the channel effect:

sR(t) =
P−1∑
p=0

K−1∑
k=0

Lk−1∑
lk=0

αlksT,p(t− τr,lk − pTp)e
−2jπp

Tp
τD,lk , (8.10)

where αlk is the attenuation of the lk the scatterer of the k the target by
considering an environment with K extended targets and each target with
Lk point scatterers. In the above equation, the channel effect is shown by the
propagation delay τr,lk and Doppler τD,lk. Moreover, the velocity information

can be extracted from those two terms as τs,k = τr,lk + τD,lk = 2(τlk−vlkt)
c0

,
where vlk is the relative velocity between the ego-vehicle and reflecting target.
By integrating the linear frequency ramp, we can obtain a phase course ϕ(t) =
α
2 t

2 + ϕ0, where α = B
tup

, B is the chirp bandwidth and tup is the chirp
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duration. If we assume that the initial phase ϕ0 = 0, the transmit chirp chain
can be expressed as:

sT(t) =
P−1∑
p=0

ejπα(t−pTp)
2

, (8.11)

and the receive waveform can be expressed as:

sR(t) =
P−1∑
p=0

K−1∑
k=0

Lk−1∑
lk=0

αlke
jπα(t−pTp−τs,lk)

2

. (8.12)

If we further consider the frequency over time aggregation that equals the
derivative of the signal phase, we obtain

fT(t) =

P−1∑
p=0

α(t− pTp)rect(
t− tup − pTp

tup
), (8.13)

where rect is the rectangular window function. In contrast, the received fre-
quency ramp with propagation time shift and Doppler shift can be expressed
as:

fR(t) =
P−1∑
p=0

K−1∑
k=0

Lk−1∑
lk=0

[α(t− 2τr,lk − pTp) + fD,lk]rect(
t− tup − 2τr,lk − pTp

tup
).

(8.14)
Thus, the beat frequency equals the difference fB(t) = fT(t) − fR(t) can be
expressed as:

fB(t) =
P−1∑
p=0

K−1∑
k=0

Lk−1∑
lk=0

[ατr,lk − fD,lk]rect(
t− tup − τr,lk − pTp

tup
). (8.15)

Then, the range and Doppler components of the beat frequency can be ex-
tracted using DFTs in fast-time and slow-time domains. With the above mod-
eling, the aim of this paper is to implement a cognitive radar system instead
of simply pausing radar illumination in the presence of a second radar sys-
tem. Specifically, in this work, the cognitive strategy is to allocate chirps on
free center frequencies within the complete allocated frequency range while
adjusting chirp bandwidth and length to available frequency and time allo-
cations, thus allowing flexible and persistent radar usage during the presence
of interfering radar systems. In the real field test, the measurement results
show that chirps of a reduced bandwidth mitigate frequency bands that are
occupied by other radar systems and allow a reduction of the chirp duration
while increasing the radar perception range by a factor of 16 to achieve the
aim.

Similarly, ref. [151] introduced a method combining constant modulus
sequences and filters through iterative quadratic programming under the
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condition of sensing clutter and interference, reducing the impact of suppres-
sion jamming by minimizing mean square error in target parameter estima-
tion. Ref. [152] presented a relaxed and cyclic optimization algorithm that
uses low-rank parameters to design multi-phase waveforms for multiple-input
multiple-output (MIMO) radar, ensuring good detection performance under
cognitive interference conditions. Furthermore, deception jamming is a mali-
cious interference occurring when a jamming system captures radar signals
and generates interference signals similar to target echoes by applying delays
or Doppler frequency modulation. These generated signals are then retrans-
mitted according to specific patterns, creating multiple false targets with fake
time delays or Doppler modulation, significantly increasing the radar’s false
alarm probability and reducing the detection probability of real targets. On
the other hand, in the condition that the prior clutter and interference infor-
mation is known, a waveform design method optimizing the pulse initial phase
to suppress inter-pulse retransmission-based velocity deception interference by
forming nulls within a specific range of the Doppler spectrum of real target
echoes can be developed for anti-interference purposes. In this direction, a
waveform design method optimizes multi-notch pulse initial phase to enhance
multi-target detection capability by setting notches near each real target echo
Doppler spectrum to address the issue of multi-target detection under veloc-
ity deception interference. That is, the following optimization problem can be
considered as

min
yJ ,α

C(yJ , α) = ||yJ −Gα||2. (8.16)

where C is the notch power, α is a auxiliary variable, yJ =
[yJ(1)yJ(2)...yJ(N)]T and yJ(n) is the matched filter output of the interfer-
ence signal containing n-th received signal. Ref. [153] addresses the suppression
of such jammers using frequency diverse array (FDA) MIMO radar, leverag-
ing its additional degrees-of-freedom in the range domain. Mainbeam jammers
are modeled as false targets lagging several pulses behind true targets. Data-
independent beamforming is initially employed to suppress false targets by
nulling the equivalent transmit beampattern with a suitable frequency incre-
ment. However, performance degradation may occur due to transmit spatial
frequency mismatches caused by quantization errors, angle estimation errors,
or frequency increment errors. To mitigate this issue, the paper proposes a
preset broadened nulling beamformer (PBNBF), which introduces artificial
interferences with appropriate powers around the nulls to create broadened
notches, ensuring robust suppression of deceptive jammers. Numerical anal-
ysis in a multi-unmanned aerial vehicle (UAV) scenario demonstrates the
PBNBF’s effectiveness, achieving improved signal-to-interference-plus-noise
ratio compared to conventional beamforming techniques. Ref. [148] introduced
an inter-pulse amplitude-phase joint design method that includes amplitude
degrees of freedom and considers constraints such as discrete phase and peak-
to-average power ratio (PAPR), minimizing interference energy and target
sidelobe energy within the stopband using the inexact alternating direction
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penalty method (IADPM). The considered optimization problem is presented
as:

min
s
f(s) = u1s

HRJs+ u2(J |s|)HRT (J |s|), (8.17)

where s = [s1s2...sN ]T is the transmitted waveform with N dimension, u1
and u2 are weighting scalar satisfying u1 + u2 = 1 to consider the trade-off
between minimizing interference and maintaining sidelobe waveform, sHRJs
is the interference power in a specific Doppler band, and (J |s|)HRT (J |s|) is
the sidelobe power of the desired signal in a specific Doppler band. Under the
constraint that the transmitted waveform should satisfy PAPR limitation and
with constant power, the above optimization can be used to design an optimal
waveform for given u1 and u2 consideration for interference control purposes.
Ref. [154] proposed a constant modulus waveform design method that mini-
mizes spectral amplitude within the interference band, generating waveforms
with low-range sidelobes and specified spectral power suppression. Specifically
focusing on the radar performance degeneration in terms of degraded sensi-
tivity and increased false alarm rates, particularly in scenarios involving syn-
chronous and asynchronous operations of radars with similar parameters (e.g.,
carrier frequency and chirp slope), ref. [155] proposes novel waveform design
strategies to mitigate mutual interference effectively. For single-input-single-
output (SISO) radar systems, two slow-time coding schemes are introduced.
The first scheme reduces interference by Doppler-shifting it away from the tar-
get region, while the second minimizes the discrete periodic CAF (PCAF) in
a desired area. For the more complex MIMO radar systems, an efficient cyclic
algorithm is proposed to design transmit waveforms, leveraging the waveform
diversity inherent to MIMO radars to reduce interference power. The proposed
solutions are computationally efficient, require minimal modifications to ex-
isting radar systems, and are adaptable for both offline and online implemen-
tation. This work establishes a foundational approach for mitigating mutual
interference in radar-dense environments, preparing for future scenarios where
shared protocols and regulations will be critical for multi-vehicle operations.
Ref. [156] presented a constant modulus waveform design method based on
minimizing the integral sidelobe criterion using a reduced-order fourth-order
sequence iterative algorithm to solve the optimization problem. Simulation
results demonstrated that the optimized waveform performs better in anti-
jamming scenarios involving multiple targets and range deception.

Ref. [157] addresses a significant challenge in radar technology: the interfer-
ence caused by the proliferation of wind turbines on ground-based medium-to-
high pulse repetition frequency (PRF) pulsed-Doppler air surveillance radars.
The traditional approach of using fixed waveforms and PRFs in pulsed-
Doppler radar systems can lead to range ambiguity, particularly when at-
tempting to achieve unambiguous velocity measurements, which necessitates
multiple coherent processing intervals (CPIs) at varying PRFs. To mitigate
these issues, the authors propose two innovative solutions: first, applying a
random initial phase to each transmit pulse while maintaining a fixed PRF,
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and second, randomizing the pulse repetition interval (PRI). Both methods
enable the design of filters that effectively suppress wind turbine interfer-
ence and ground clutter while allowing for unambiguous range measurements
within a single CPI. The results demonstrate that these techniques not only
resolve range ambiguity but also enhance detection capabilities for airborne
targets, including those with slow or zero radial velocity beyond the ground
clutter horizon. The performance of the proposed algorithms is rigorously
evaluated through simulations and experimental data analysis, focusing on
key metrics such as the probability of target detection and SINR loss. The
findings suggest that these approaches hold significant promise for improv-
ing radar performance in environments affected by wind turbine interference,
making them particularly relevant for applications within the Federal Avia-
tion Administration and coastal radar systems. Ref. [158] addresses a critical
challenge in autonomous driving technology, specifically focusing on improving
the performance of radar sensors used in advanced driver assistance systems
(ADAS). The research tackles two main issues: interference management and
ghost target detection in FMCW radar systems. The authors introduce a
novel technique that employs an orthogonal frequency division multiplexing
(OFDM) waveform to overcome these limitations. The OFDM approach lever-
ages maximum length sequence (MLS), also known as m-sequence, to provide
orthogonality between different transmitted waveforms. This orthogonality is
crucial for reducing interference between multiple radar systems operating
in close proximity. To further enhance the robustness of the system, the re-
searchers incorporate a scrambled sequence into the proposed waveform. This
additional feature aims to minimize the impact of interference and improve
the reliability of target detection. The study conducted simulations to evalu-
ate the performance of the proposed algorithm in various scenarios, including
single-neighbor and multiple-neighbor environments. These simulations were
designed to test the effectiveness of the OFDM-based approach in mitigat-
ing interference and reducing ghost target detections. The results of these
simulations were then compared to the performance of conventional FMCW
radar systems under similar conditions. This comparative analysis provides
insights into the relative advantages of the proposed technique over existing
methods. The advancements proposed in this paper have significant implica-
tions for the future of autonomous vehicles. By improving the reliability and
accuracy of radar sensors, this research contributes to enhancing the overall
safety and performance of self-driving cars. The ability to more effectively
manage interference and reduce ghost target detections could lead to more
robust ADAS systems, potentially accelerating the development and adoption
of higher levels of vehicle automation. As the automotive industry continues
to push toward fully autonomous vehicles, innovations in sensor technology,
such as those presented in this paper, play a crucial role in overcoming exist-
ing challenges and paving the way for safer, more reliable self-driving systems.
These studies highlight the development of advanced cognitive waveform de-
sign strategies that optimize radar performance against various interference
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techniques, contributing to the robustness and adaptability of cognitive intel-
ligent radar systems in complex electromagnetic environments.

8.4 Detect-and-Suppress at the Receiver

Besides the detect and avoid strategy at the transmitter end, the receiver
end can also perform the detect and suppress strategy for radar interference
mitigation purposes. Specifically, the anti-interference capabilities of cognitive
radar receivers primarily rely on the design of reception filters in spatial, tem-
poral, frequency, and polarization domains to accumulate the energy of target
echoes while suppressing the energy of interference signals. The related tech-
niques can be broadly categorized into cognitive anti-interference reception
beamforming (spatial filtering), as well as temporal filtering, Doppler domain
(frequency domain) filtering, polarization domain filtering, and multi-domain
joint filtering [132]. Spatial reception beamforming refers to utilizing the an-
gular information of targets and interference by designing spatial filters to ac-
cumulate the energy of signals from the target direction while suppressing sig-
nals from the direction of interference. This can be further divided into static
beamforming and adaptive beamforming. For static beamforming, windowing
techniques are widely used in low-sidelobe reception beamforming to counter-
act omnidirectional interference, owing to their low computational complexity
and strong real-time processing capabilities. Classic window functions include
the Chebyshev window and the Taylor window. In recent years, substantial
research has been conducted on the design of window functions [159, 160],
thereby enhancing the flexibility of traditional window functions. However,
most of traditional windowing techniques are still limited to uniform arrays,
even with the aforementioned enhancements. Compared to static beamform-
ing, adaptive beamforming further utilizes the provided spatial degree of free-
dom to design appropriate reception beamforming suitable for the underlying
environment. Although also coming with increasingly more complexity, adap-
tive spatial filtering often provides better results by customizing waveform to
a specific interference detected in the environment. For example, ref. [161] is
a great work to develop an adaptive digital beamforming technique in this
direction. Through the special design, the proposed adaptive beamforming
can perform interference suppression without the exact knowledge of the in-
terfering signal’s Direction of Arrival (DoA) and consequently without the
calibrations. Specifically, the bemafoming output y(k) can be expressed as:

y(k) = wTx(k), (8.18)

where w ∈ CM×1 is the weighting vector and x ∈ CM×1 is the sampled signal
fromM antenna elements. In the proposed adaptive design, an error term e(k)
is defined to evaluate the deviation of the beamforming output and desired
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FIGURE 8.2
Block diagram of the complete interference cancellation system (copyright
from ref. [161]).

signal d(k), being expressed as:

e(k) = d(k)− y(k). (8.19)

Thus, we can employ different optimization algorithms to adjust the beam-
forming weighting to achieve the above goal. In the case that the normalized
least mean square algorithm is chosen, we can use the following recursive
equation to update the beamforming weighting until convergence, as shown
below:

w(k + 1) = w(k) + u(k)e(k)x∗(k), (8.20)

where

u(k) =
β

xH(k)x(k)
, (8.21)

is the variable adaptation step size and 0 < β < 2 is utilized to guarantee
error convergence. Then, the proposed interference cancellation consists of
three steps, as shown in Figure 8.2. In the interference detection step, the
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interfered part of the signal can be captured by evaluating the amplitude
variation v(k) of the signal, being expressed as

v(k) = x(k)− x(k − 1), (8.22)

where x(k) is the received signal at a single channel. By calculating the high-
est radar cross section (RCS) that can be present in real road scenarios, a
threshold can be defined in advance to filter all interfered signals for further
processing. If we define the interference start and end as ks and ke respectively,
the below equation expresses the signal output xint(k) in this period:

xint(k) = xt(k) + xi(k) + n(k), ks < k < ke. (8.23)

where xt(k) is the desired signal reflected from target, xi(k) is the interfer-
ence signal, and n(k) is the noise. In other words, the interference detector in
Figure 8.2 identifies the samples of the input signal that are affected by the
interference. With the above modeling, the aim of the adaptive beamform-
ing design is to adaptively adjust the beamforming weighting to reduce the
variation in the intermediate beamforming output yi(k)− and bring it below
the threshold. Thus, the error signal e(k) is defined as below in this interfered
period:

e(k) = yi(k)− yi(k − 1), ks < k < ke. (8.24)

In this setting, the aforementioned normalized least mean square algorithm
will design a beamforming weighting, which can minimize the error caused by
the interference signal by suppressing it to the noise level. Then, this beam-
forming vector can be used to perform interference cancellation by nulling the
signal from the detected interference node. Simulation results confirm that up
to 23 dB SINR improvement can be achieved after the proposed beamform-
ing processing to achieve the design aim. Inspired by this work, techniques
such as diagonal loading have been proposed based on the white noise gain
constraint, iteratively calculating the appropriate diagonal loading parameter
to further improve the robustness of adaptive beamforming. Furthermore, to
reduce the computational complexity of the iterative model, methods based
on the eigenspace robust adaptive beamformer design have been proposed,
requiring accurate sensing of the number of jammers/desired signal sources.
Similar ideas can also be used in temporal, Doppler, and polarization domains
to separate target and interference signals in the receiver end.

Given the limitations of single-domain anti-jamming techniques, multi-
dimensional joint filtering techniques, such as time-frequency, space-time, and
space-time-frequency joint filtering, have gained increasing attention. Stud-
ies have examined the time-frequency distribution of intermittent sampling
jamming and designed jamming suppression filters in the time-frequency do-
main. Further research combined signal reconstruction and time-frequency do-
main filtering to suppress various types of intermittent sampling jamming in
multi-target environments. Ref. [162] tackles a significant challenge in passive
bistatic radar systems: the effective cancellation of interference. The study
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begins by examining how three key factors—fractional time delay, channel
linearity, and the SNR in the reference channel—impact the performance of
interference cancellation techniques. The analysis reveals that these factors
can significantly degrade the effectiveness of adaptive cancellation algorithms.
To address these limitations, the authors propose a two-pronged approach.
First, they introduce a signal reconstruction method designed to enhance the
quality of the reference signal. This improvement is crucial for more accurate
interference cancellation. Second, they develop a novel joint spatiotemporal
domain interference suppression technique. This method is particularly effec-
tive in mitigating both direct-path and multi-path interference, resulting in
a substantial improvement in target SNR. The paper’s contributions are not
merely theoretical; the researchers validate their proposed methods through
real-world data experiments. These practical tests demonstrate the efficacy of
their approach in actual radar operations, underscoring the potential for sig-
nificant advancements in passive bistatic radar technology. By effectively ad-
dressing the interference cancellation problem, this research paves the way for
more reliable and accurate passive radar systems, with potential applications
in various fields requiring non-emitting surveillance capabilities. Ref. [163] ad-
dresses the challenge of spectrum sharing between radar systems and com-
mercial services, focusing on temporal sharing techniques to reduce radar
exclusion zones and improve spectral efficiency. The proposed approach is
particularly relevant for scenarios involving multiple radars operating in close
proximity within the same frequency band. The authors introduce signal pro-
cessing techniques that enable a secondary user to transmit without exceeding
a specified interference level at any radar. The method relies on the periodic
behavior of radars and employs adaptive sensing to track radar behavior in
real-time without requiring prior information. A crucial component of this
approach is a pulse deinterleaving mechanism that separates multiple radar
emissions in real-time, without the need for batch or offline processing. This
real-time deinterleaving is essential for effectively managing the shared spec-
trum in dynamic environments. The temporal sharing approach presented in
this paper is particularly suited for static or low mobility sharing scenarios,
where the interference channel exhibits quasi-periodic features. By enabling
more efficient use of the spectrum, this method can potentially increase the
available bandwidth for commercial services while maintaining the operational
integrity of radar systems. This research contributes to the ongoing efforts to
improve spectrum utilization, addressing regulators’ concerns about the un-
derutilization of radar-reserved bands. By providing a framework for temporal
sharing, the paper offers a practical solution that could lead to more flexible
and efficient spectrum allocation policies, benefiting both radar operators and
commercial service providers.

Ref. [164] introduces a novel real-time method for mitigating uncorrelated
automotive radar interference, specifically targeting the challenges posed by
mutual interference among frequency modulated continuous wave (FMCW)
radar sensors in vehicles. As the deployment of these sensors increases,
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ensuring their reliable operation in complex vehicular environments becomes
critical. The proposed approach utilizes the short time Fourier transform
(STFT) in conjunction with L-Statistics to effectively address this issue. The
method begins by computing the STFT of the beat signal and sorting each
constant frequency line of the resulting spectrogram in ascending order, which
strategically positions bins affected by interference toward the right side of the
time-frequency plane. By coherently summing the first q% of time bins deemed
unaffected by interference, the algorithm constructs an interference-free range
profile. Notably, this method does not require a prior step for interference
detection, simplifying the processing and enhancing efficiency. By setting the
STFT step size to half of the window length, the algorithm achieves per-
formance nearly equivalent to that of a unitary step size while significantly
reducing computation time, thus facilitating real-time implementation. The ef-
fectiveness of this technique was validated through evaluations using synthetic
automotive radar signals to explore various design parameters, including slid-
ing window length and summation percentage. Subsequently, the method was
successfully implemented on a Texas Instruments AWR1843 radar platform
and tested in a controlled laboratory environment. The article provides a de-
tailed account of the real-time processing flow, highlighting implementation
specifics related to the hardware resources of the AWR1843 platform. Testing
scenarios included utilizing the AWR1843 as a victim radar while employing
up to three additional similar radar platforms as interference sources with
varying parameters. This real-time solution fills a significant gap in existing
interference mitigation strategies, which often rely on post-processing tech-
niques, thereby offering a practical enhancement to the reliability and per-
formance of automotive radar systems operating in environments with mul-
tiple sensors. Ref. [165] addresses the limitations inherent in single-domain
filters used for interference suppression in antenna arrays, proposing a novel
multi-domain collaborative oblique projection filter to enhance performance
in challenging scenarios. Traditional single-domain filters, whether operating
in the temporal, frequency, or spatial domain, often struggle when the dif-
ferences between the target signal and interference are minimal within their
respective domains. To overcome this issue, the authors theoretically derive
multi-domain spaces that facilitate the distinction between target signals and
interference. They introduce a multi-domain oblique projection operator de-
signed to recover the original target while effectively suppressing interference.
This innovative approach allows the filter to maintain excellent performance
even when the differences in individual domains are insignificant, contrasting
sharply with the significant degradation observed in both single-domain and
cascade filters under similar conditions. As a practical demonstration of their
method, the researchers present a space-polarization-frequency domain collab-
orative filter based on oblique projection. The study includes comprehensive
performance analysis and simulation results that illustrate the superiority of
the proposed filter for interference mitigation, marking a significant advance-
ment in techniques for enhancing the reliability and effectiveness of antenna
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array systems in complex environments. There are also several representative
works developing multi-domain radar filters to perform interference mitiga-
tion, we refer interested readers to refs. [166–170] for more details. Note that
the above discussion also highlights that accurate identification of interference
types and precise parameter estimation we discussed previously are crucial for
effective interference mitigation.

8.5 Centralized Coordination

In the previous sections, we mainly focus on the interference mitigation op-
erations in a single radar transceiver, either employing detect-and-avoid at
the transmitter end or detect-and-suppress at the receiver end. Besides those
approaches, joint decisions between multiple radar transceivers can also re-
alize interference mitigation, named the centralized coordination approach.
Centralized coordination for radar interference mitigation has made signifi-
cant advancements by integrating diverse strategies and technologies to ad-
dress increasingly sophisticated jamming threats. In this direction, cognitive
intelligent radar anti-jamming has become a major research direction, in-
corporating intelligent scheduling algorithms that operate in a “perception-
learning-decision-action” feedback loop. This approach allows radar systems
to dynamically adjust waveform parameters and allocate multi-domain re-
sources to counter agile, cluster, and intelligent jamming. Resource intelligent
scheduling focuses on three primary areas: waveform, power, and frequency
domain resource scheduling. Waveform parameter scheduling dynamically ad-
justs radar’s transmission signals based on real-time environmental sensing,
enhancing emission strategy unpredictability. Studies have utilized game the-
ory to optimize beamforming and power distribution in multi-base radar sce-
narios [171, 172]. For example, several iterative beamforming and power dis-
tribution optimization algorithms for networked radars are proposed to mini-
mize mutual interference from multiple radars. Ref. [172] proposed a potential
game-based waveform allocation scheme, improving SNR under jamming con-
ditions. Ref. [173] addressed deceptive jamming in multi-target tracking with a
game model based on partially observable Markov decision processes, enhanc-
ing tracking accuracy. In this direction, ref. [174] is a great work to develop
a centralized framework for multiple radars to achieve interference mitigation
by means of frequency resource optimization. Different from the detect and
avoid at the radar transmitter approach, v2x-communication is utilized to
convey minimal information between multiple radars to realize centralization.
Specifically, the radar interference between two opposite radars in different
vehicles is analyzed based on the geometrical layout in Figure 8.3. To do so,
the distance between two radars is decomposed into two directions, one is the
extension direction of roads, denoted as ±H, and the other is the vertical
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FIGURE 8.3
A simple layout of interfering automotive radars. (a) Front radar to front
radar. (b) Side radars to front radar. (c) Side radars to side radar. (d) Front
radars to side radar.

direction, denoted as ±V . By doing so, given a target vehicle as the origin of
the coordinate system, any surrounding vehicle can be represented as (H,V )
for further analysis. Then, to quantize the front radar interference caused by
the other front radars of the vehicles traveling in the opposite direction, the
location of the interfering front radar will satisfy{

V > 0

H > ϵff = V
tan ϕ

2

,
(8.25)

where ϵff is the minimum distance caused by the antenna beam width and ig-
nored sidelodes. Similarly, we can also identify the interference source caused
by the side radars in other vehicles to the front/side radar in the target ve-
hicle. Then, in the proposed framework, for j the vehicle, its front radar, left
side radar, and right side radar will be denoted as 3j − 2, 3j − 1, and 3j,
respectively. Thus, there are M = 3 × J radars in the consideration of the
centralized framework. Assuming there are T orthogonal sub-bands with the
same bandwidth, which are under the control of the centralized framework,
fm ∈ {0, 1}1×T is used to denote the allocation result of a specific timeslot
of radar m and F ∈ {0, 1}M×T is used to collect the allocation results of all
radars. In this framework, each vehicle is required to upload its parameters
to a base station, including the locations and the orientations for each radar.
Then given an allocation matrix F, the base station calculates the potential
interference between each radar pair that is utilizing the same sub-band for
radar purposes based on the aforementioned geometrical modeling and collects
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the results as P ∈ RM×M as

P(m,n) =

{
0, no potential interference

PtG
2( λ

4π )
2R−2

mn, otherwise,
(8.26)

based on the radar equation. Based on the above modeling, the centralized
radar resource allocation problem can be expressed as

min
F

∑
(PF), (8.27)

satisfying ||fm||0 = 1, which means each radar can only be allocated to a
sub-band. Different optimization algorithms can be used to solve the above
optimization problem and obtain the optimal sub-band allocations. Moreover,
more complex designs can be considered by modeling the potential interfer-
ence with more factors, such as transmit power and timeslot. In this work, a
greedy algorithm is employed to solve the considered minimization problem.
Specifically, the allocation matrix will be initialized as a zero matrix first,
then the base station allocates the sub-bands for radars in the order of their
index. For each radar, the base station calculates the interference that will be
introduced to all sub-bands and allocates the radar with the sub-band, ensur-
ing that the introduced interference is minimal until convergence. Simulation
results confirm the effectiveness of the proposed solution. Ref. [175] tackles
the increasing challenge of interference among small, sophisticated wireless
sensors sharing the electromagnetic spectrum, with a particular focus on au-
tomotive radars. As the number of these sensors is expected to grow rapidly
over the next decade, effective interference mitigation becomes crucial. The
authors propose a novel approach based on pseudo-random cyclic orthogo-
nal sequences (PRCOS), which allows sensors to quickly learn their inter-
ference environment and avoid using overlapping frequency waveforms. This
method ensures a minimum frequency separation between a radar’s instanta-
neous transmitting frequencies, thereby creating a frequency guard that guar-
antees orthogonality between sequences. Consequently, this enables efficient
spectrum sharing among radars in a decentralized manner, eliminating the
need for centralized control systems and allowing radars to adaptively man-
age frequency separation according to the prevailing interference conditions.
The paper makes several significant contributions, including the development
of a mathematical model for mutual interference in automotive radar systems
and an analytic framework to characterize effective interfering power based
on frequency separation. Additionally, the authors introduce a new family
of waveform sequences capable of mitigating multi-radar interference with-
out requiring centralized coordination. They provide a new statistical char-
acterization of mutual interference in an analytically tractable form, which
is validated through simulations and experimental measurements on commer-
cially available automotive radars. The results demonstrate considerable in-
terference reduction when compared to traditional random stepped frequency
waveform sequences (RSFWS), highlighting the effectiveness of the proposed
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model and framework in addressing mutual interference in automotive radar
systems while offering insights applicable to a broader range of sensor sce-
narios. Ref. [176] addresses the critical issue of mutual interference among
millimeter-wave automotive radars, which has become a significant limiting
factor for radar detection performance as these systems are increasingly de-
ployed in vehicles for ADAS. The authors present a comprehensive analysis
of mutual interference in FMCW radars, considering both co-channel interfer-
ence (CCI) and adjacent channel interference (ACI). They employ a stochastic
geometry model to analyze CCI, while using deterministic analysis for ACI
assessment. This dual approach allows for a more thorough understanding of
the interference mechanisms in automotive radar systems. To mitigate the in-
terference problem, the researchers propose a time-frequency division multiple
access (TFDMA) scheme. This coordinated approach aims to reduce interfer-
ence by efficiently allocating time and frequency resources among multiple
radar systems. The performance of this TFDMA scheme is evaluated based
on several metrics, including mitigation delay, probability of interference, ef-
fective detectable density, maximum number of interference-free radars, and
control signaling overhead. Furthermore, the study explores power allocation
strategies to enhance the effectiveness of the coordinated interference mitiga-
tion approach. This aspect is crucial for optimizing the overall performance
of the radar systems in the presence of multiple interfering sources.

The authors validate their proposed framework for interference analysis
using Monte Carlo simulations. The results demonstrate a significant perfor-
mance improvement of 3.5 dB with the coordinated interference mitigation
approach, highlighting its potential for enhancing the reliability and effec-
tiveness of automotive radar systems in complex, multi-radar environments.
This research contributes to the ongoing efforts to improve the performance
of millimeter-wave automotive radars in the face of increasing mutual in-
terference, which is essential for the continued development and deployment
of advanced driver assistance systems and autonomous driving technologies.
RadChat [177] is an innovative distributed networking protocol designed to
mitigate interference among FMCW-based automotive radars, including self-
interference, through the cooperative use of radar and communication sys-
tems. Operating in the 77 GHz radar band, RadChat integrates both radar
and communication functionalities by employing different waveforms on the
same hardware, requiring minimal modifications to standard FMCW-based
automotive radar, which is widely recognized for its affordability and robust-
ness in the automotive sector. The protocol includes a thorough interference
analysis of FMCW radar and narrowband communication systems, reveal-
ing that radar-to-communication (R2C) and communication-to-radar (C2R)
interference can significantly disrupt reliable concurrent communication and
radar sensing. Consequently, it is essential that radar and communication
signals with similar power levels do not share the same time-frequency re-
sources. Additionally, the analysis indicates that radar-to-radar (R2R) in-
terference can be effectively minimized if FMCW radar chirp sequences are
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staggered in their frequency sweeps. RadChat features a protocol for the phys-
ical (PHY) and medium access (MAC) layers that substantially reduces R2R
radar interference while fulfilling automotive radar sensing requirements for
both radars mounted on different vehicles and those on the same vehicle,
achieving this in less than 80 milliseconds. The performance of RadChat has
been rigorously analyzed and compared to standard FMCW systems within
a single-hop dense vehicular ad-hoc network (VANET), demonstrating its ef-
fectiveness in significantly reducing mutual interference among automotive
radars. This advancement addresses a critical challenge in enhancing the re-
liability and performance of advanced driver assistance systems (ADAS) and
autonomous driving technologies. Ref. [178] addresses the pressing issue of
mutual interference among automotive radar systems, particularly focusing
on FMCW millimeter-wave (MMW) radars operating within the constrained
frequency band of 77 to 81 GHz. As the number of vehicles equipped with
these radars continues to surge, the limited spectrum availability leads to an
increased risk of mutual interference, which can significantly hinder target de-
tection and parameter estimation capabilities. To mitigate this interference,
the authors propose two primary strategies. The first is a Sparse Interference
Extraction (SIE) method that leverages the sparse characteristics of mutual
interference in the two-dimensional (2D) time domain, allowing for effective
extraction and removal of interfering signals from the received radar data.
The second approach introduces a novel three-dimensional (3D) Tensor De-
composition (TD) method that capitalizes on the low-rank property of useful
echoes across multiple channels, enabling the decomposition of received sig-
nals into distinct components of mutual interference and useful echoes. The
effectiveness of the proposed TD method is evaluated through several numeri-
cal simulations, particularly in the context of MIMO systems operating under
complex electromagnetic conditions. Furthermore, practical experiments are
conducted to demonstrate the feasibility of this approach, comparing its per-
formance against various state-of-the-art methods for interference mitigation
in automotive radar systems. Overall, this research contributes significantly
to enhancing the performance and reliability of automotive radar systems in
increasingly crowded electromagnetic environments, addressing a critical chal-
lenge in the advancement of ADAS and autonomous driving technologies.

In the context of distributed radar systems, studies have exploited the high
amplitude correlation of jamming signals across receiving nodes while preserv-
ing the independence of target echoes, enabling the detection and identifica-
tion of range false target jamming. To further enhance detection, clustering
methods have been proposed, utilizing amplitude ratio differences between
true and false targets among receiving nodes. Additionally, spatial scatter-
ing characteristics, including Hermitian distances, have been used to identify
false targets, while a homogeneity hypothesis method has been introduced to
eliminate false targets on the localization plane through the spatial correla-
tion of true targets. The suppression of range-velocity joint deception jam-
ming has been achieved by exploiting differences in localization and Doppler
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characteristics between true and false targets. Radar polarization science has
played a critical role in false target suppression, particularly through polariza-
tion identification, which distinguishes true targets from false ones by extract-
ing polarization domain characteristics. Research has focused on analyzing
scattering characteristics and polarization scattering matrices, and utilizing
transient polarization projection vectors to differentiate target echoes from
jamming signals. High-resolution time-division polarization measurement sys-
tems have addressed challenges related to both time-division and instanta-
neous polarization measurement systems, enabling the study of wideband
target characteristics. Methods such as dual-station models have been pro-
posed to combat polarization modulation jamming, extracting features for
radar target identification and active decoy suppression. For fully polarized,
complex-modulated false targets, techniques involving dynamic adjustments
to the transmitted signal’s carrier frequency have proven effective. In combat
environments, the dynamic polarization characteristics of mid-course ballistic
targets have been analyzed to improve polarization identification accuracy.
By centralizing and coordinating these advanced techniques, modern radar
systems have achieved robust performance against complex and dynamic elec-
tromagnetic threats. These efforts integrate innovative interference detection,
resource optimization, and adaptive countermeasures, highlighting the effec-
tiveness of cognitive intelligent radar anti-jamming strategies in real-world
scenarios.
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ISAC Systems and
Architectures

9.1 Motivations and Possible Applications

With the establishment of the 5G standard, there has been a surge in in-
terconnected devices and communication services, leading to rapid growth
in the wireless communication industry. Consequently, the natural spectrum
resources have become increasingly crowded. The scarcity of spectrum re-
sources has resulted in resource competition among various service devices1

and a significant increase in spectrum auction prices.2 These developments
have brought about a higher demand for spectrum usage in higher frequency
bands.

Meanwhile, radar sensing, which has been significantly refined since its
inception in the first half of the 20th century, has been deployed worldwide
in various applications, including air traffic control (ATC), geophysical mon-
itoring, weather observation, automotive safety, and national defense. Radar
sensing operates in frequency bands with abundant wideband resources. As a
result, the relevant frequency bands of radar sensing have become one of the
optimal candidate bands for future communication system sharing. Currently,
wireless communication systems such as 5G NR, LTE, and Wi-Fi are gradu-
ally expanding to higher frequencies, such as the millimeter-wave band. The
upcoming 5G technology and future generations of wireless communication
systems are also expected to coexist with radar sensing systems. However,
with this coexistence, the interference in radar sensing bands is also increas-
ing, making the interference problem in spectrum sharing between sensing
and communication a critical area of research and development in sensor

1By 2025, the global number of interconnected devices is expected to reach 75 billion,
further emphasizing the urgent need for additional spectrum resources.

2Since 2015, mobile network operators in the United Kingdom have been required to pay
a total annual fee of £80.3 million for the use of the 900 MHz and 1800 MHz bands, which
are utilized for voice and data services using a mix of 2G, 3G, and 4G technologies. Similarly,
in Germany, the total amount raised from the auction of four frequency bands by mobile
network operators exceeded 5 billion euros. The Federal Communications Commission in
the United States completed its first 5G auction, selling 28 GHz spectrum licenses and
raising $702 million.
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fusion. Sensor and communication fusion can avoid the underutilization of
spectrum resources, thereby improving operational efficiency. Consequently,
spectrum sharing between sensor and communication systems has garnered
significant attention. In addition, sensor and communication fusion technolo-
gies that share hardware resources have also become a major focus of interest.
In fact, both radar sensing and communication systems are evolving toward
higher frequencies, larger antenna arrays, and miniaturization. This trend
makes their hardware architectures, communication channel characteristics,
and signal processing increasingly similar. It presents an exciting opportunity
to leverage wireless infrastructure for sensing purposes. Integrated hardware
sensor fusion systems enable future networks to transcend traditional net-
works, providing ubiquitous sensing services for measuring and even imaging
the surrounding environment. The vast amount of data acquired through such
sensing capabilities is considered a powerful driving force for learning and es-
tablishing intelligence in the future smart world, finding extensive applications
in many scenarios.

The application scenarios of sensor and communication fusion encompass
various aspects of life. These include smart homes related to daily living,
human-machine interaction in the domains of entertainment and education, in-
vehicle sensing for connected cars and autonomous driving, intelligent factories
in the manufacturing sector, traditional application environments in radar
sensing for environmental monitoring and remote sensing, as well as topics
related to base station sensing and drone surveillance in the context of 6G
networks. In Table 9.1, we provide detailed explanations of the concepts and
requirements of each application.

9.2 Fundamentals and Frameworks of ISAC

The development of sensing and communication technologies can be traced
back to the military applications of the 1960s. Even before the birth of mod-
ern digital communication technologies, researchers at that time recognized
that certain specific communication functionalities could be achieved through
military radar sensing. Radar sensing, originally designed as a missile rang-
ing instrument, embedded communication information into a series of radar
sensing pulses using the pulse interval modulation (PIM) technique. In this
section, the development of integrated sensing and communication (ISAC)
technology will be outlined from a historical perspective, divided into four
parts.

Early development of radar sensing: In the early stages of radar sens-
ing, mechanical motors were used to drive the system, allowing periodic rota-
tion of the antenna to search for targets in space. However, such radar sens-
ing faced several key challenges, such as lack of functionality and flexibility,
and susceptibility to interference. In view of these challenges, phased array
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TABLE 9.1
The brief discussion of different ISAC application scenes.

technology, also known as electronic scanning array technology, was devel-
oped. Unlike mechanically rotating antennas, phased arrays generate spatial
signal beams to electronically control the direction of sensing. FuMG 41/42
Mammut, the long-range phased array early warning radar system developed
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by GEMA company in Germany during the late stages of World War II, was
capable of detecting targets flying at an altitude of 8,000 meters within a
range of 300 kilometers.

Interaction between radar sensing and communication: Mammut
was not only the first phased array radar sensing system but also the first
multiple-antenna system, greatly influencing the development of multiple-
input multiple-output (MIMO) systems. In 1994, Paula and Kailath obtained
the first patent for MIMO communication, ushering in a new era for 3G, 4G,
and 5G wireless networks. Triggered by MIMO communication technology,
the Lincoln Laboratory at the Massachusetts Institute of Technology (MIT)
presented the concept of centralized MIMO radar at the 2004 IEEE Radar
Conference. Compared to phased array radar sensing, MIMO radar improved
flexibility and sensing performance. Concepts such as degrees of freedom and
diversity originated from MIMO communication theory and became the cor-
nerstone of MIMO radar theory. The research on the integration of radar
sensing and communication began in the early 2000s. In the 1990s, the Office
of Naval Research (ONR) in the United States initiated the Advanced Multi-
function Radio Frequency Concept (AMRFC) program, aiming to design in-
tegrated RF front-ends by dividing multiple antennas into different functional
modules, such as radar sensing, communication, and electronic warfare mod-
ules. The research of ISAC emerged from the 1990s to the 2000s, motivated
primarily by the AMRFC and subsequent projects like the ONR-sponsored
InTop project. During this period, various ISAC schemes were proposed in
the radar sensing community, with the overall idea of embedding communica-
tion information into commonly used radar sensing waveforms. For example,
combining linear frequency modulation signals with phase-shift keying (PSK)
modulation, which was the first ISAC waveform design using linear frequency
modulation signals. Subsequently, many research works started focusing on
modulating communication data by utilizing radar sensing waveforms such
as linear frequency modulation signals and frequency/phase encoding wave-
forms as carriers. Orthogonal frequency division multiplexing (OFDM), a key
technology in 4G and 5G wireless networks, was discovered for radar sens-
ing purposes in the early 2010s. In OFDM radar sensing, the impact of ran-
dom communication data generation can be mitigated by simply performing
fast Fourier transform (FFT) and Inverse FFT (IFFT), while also separat-
ing the delay-Doppler. Two approaches based on chirp and OFDM signals
respectively, are the design methods for “sensing waveform-based” and “com-
munication waveform-based” radar sensing. In 2013, the Defense Advanced
Research Projects Agency (DARPA) funded the Shared Spectrum Access for
Radar and Communications (SSPARC) project, aiming to release a portion
of the spectrum below 6 GHz from radar sensing bands for shared use by
radar sensing and communication. This led to another interesting research
topic within the cognitive radio framework, “radar sensing-communication
coexistence,” where radar sensing and communication systems coexist in the
same frequency band without excessive mutual interference. In this context,
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radar sensing and communication systems coexist in the same frequency band
without excessive mutual interference. In addition to spectrum coexistence
and interference management addressed by RCC, ISAC further achieves a
deeper integration of sensing and communication functions through shared
infrastructure.

Parallel development of radar sensing and communication: In
2010, Marzetta proposed the concept of massive MIMO (mMIMO), which
later became one of the core technologies for 5G and subsequent networks. In
2013, NYU WIRELESS published a groundbreaking paper on the feasibility
of using millimeter-wave (mmWave) signals for mobile communications, which
had a far-reaching impact. Since then, mmWave and mMIMO have become
a complementary and synergistic pair. Due to the reduced signal wavelength,
mMIMO antenna arrays can be physically smaller, and with the high beam-
forming gain provided by mMIMO arrays, mmWave signals can be transmitted
over longer distances. However, a key challenge in the large-scale deployment of
mMIMO mmWave technology is the significant hardware cost and energy con-
sumption associated with the required large number of mmWave RF chains.
This has compelled wireless researchers to rethink the RF front-end archi-
tecture of mMIMO systems. Among them, the hybrid analog digital (HAD)
structure, which connects a large number of antennas with a small number of
RF chains through carefully designed phase shifters, has emerged as a viable
solution. Coincidentally, in the same year as the birth of mMIMO, the con-
cept of Phased-MIMO radar emerged, attempting to strike a balance between
phased array and MIMO radar. By transmitting separate waveforms on each
antenna, MIMO radar favors increased degrees of freedom at the cost of limited
array gain. In contrast, phased array radar sensing concentrates the transmit-
ted power in the direction of the target, offering higher array gain but at the
expense of reduced degrees of freedom. Similar to the case of the HAD struc-
ture used for communication, a natural idea is to design a system architecture
that bridges the gap between the two by connecting multiple antennas with
a limited number of RF chains through a phase shifter array. Through this
approach, phased-MIMO radar achieves a flexible trade-off between phased
array and MIMO radar. In the extreme case of having only one RF chain,
phased-MIMO radar simplifies to phased array radar. On the other hand, if
the number of RF chains equals the number of antennas, phased-MIMO radar
is equivalent to MIMO radar. However, despite the parallel but largely inde-
pendent developments of radar sensing and communication, there exist issues
of device duplication, such as the devices used between phased array radar
sensing and communication and between MIMO radar and MIMO communi-
cation. Multi-base radar sensing can be performed in parallel with cooperative
communication. It is worth noting that there are similarities between radar
sensing and communication signal processing, including beamforming used for
both communication and radar sensing, hypothesis testing for target detection
and symbol detection, as well as mmWave communication channel estimation
and radar sensing target estimation.
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Fusion of radar sensing and communication: The mentioned similar-
ities have led to the integration of both technologies into systems and devices,
providing a clear opportunity for simultaneous sensing and communication
through a single transmission service. In fact, radar sensing and communi-
cation technologies have become so tightly intertwined that they have been
evolving in the same direction over the past decade. In other words, high-
frequency bands and massive antenna arrays inherently demand more spec-
trum and spatial resources. From a communication perspective, wide band-
width and antenna arrays increase communication capacity and provide abun-
dant connectivity. On the other hand, the increased bandwidth and number
of antennas significantly enhance the performance of radar sensing in terms of
distance and angular resolution, enabling more accurate perception of multiple
targets or mapping complex environments. Radar sensing and communication
also tend to exhibit similarities in channel characteristics and signal processing
methods as they operate in the millimeter-wave frequency range. Especially
due to the less abundant propagation paths compared to the sub-6 GHz fre-
quency range, the mmWave communication channel is sparse and dominated
by line-of-sight (LoS) paths. Therefore, the mmWave communication channel
models align better with physical geometric shapes, and when combined with
mMIMO, they have facilitated the development of beam-domain signal pro-
cessing for mmWave communication. These techniques are not limited to beam
training, beam alignment, beam tracking, and beam management, all of which
can be based on the HAD structure. It is worth noting that communication
in the beam domain to some extent emulates traditional radar signal process-
ing, where beam training and tracking can be analogized to target search and
tracking. As a result, the boundary between radar sensing and communication
has become blurred, and sensing functionalities are not necessarily limited to
radar sensing infrastructure. Wireless infrastructure and devices can also be
perceived through radio transmission and signals, constituting the foundation
and fundamental principles of ISAC technology.

Recently, the increasing demand for spectrum and the emergence of nu-
merous applications in future 6G networks have made the collection of large
amounts of physical world information an indispensable function. Consider-
ing hardware costs, communication system performance, and the capability
of sensing information, the development of sensing and communication fusion
technology is imminent. Currently, sensing and communication fusion technol-
ogy is still in the academic development stage, and relevant standards have not
been clearly defined. Many technological advancements are initially based on
existing standards for further improvement, such as the use of IEEE 802.11p
in vehicular networks. Industry organizations, such as Hexa led by Nokia in
Europe and Huawei in China, have also proposed relevant white papers and
conducted prototype testing. In fact, the sixth generation of mobile commu-
nication standards (6G) will build upon existing beyond 5G (B5G) network
technologies and deepen the integration between networks and the physical
world. Therefore, in addition to the continuous evolution of spectrum and
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standardization processes, 6G will further possess characteristics such as open
architecture, energy efficiency, security, and intelligence to cope with the rapid
development of integrated virtual and physical environments and the emer-
gence of new applications like autonomous driving, remote healthcare, and the
Meta Universe. The aforementioned applications of the 6G network will re-
quire the integration and collaboration of sensing and communication, which
promotes signal processing in both areas and enables individual performance
improvements through mutual assistance.

There is a notable distinction in signal processing between sensing and
communication. Sensing technology aims to extract relevant information
about the environment by observing, collecting, and analyzing data from noisy
surroundings. On the other hand, communication focuses on transmitting
and recovering messages through specialized signal design from noisy envi-
ronments. The ultimate goal of sensor and communication fusion is to unify
these two operations and pursue a balance between them while enhancing
their respective performance. On one hand, sensor and communication fusion
is expected to significantly improve spectrum and energy efficiency while re-
ducing hardware and signal processing costs. This is achieved by attempting
to merge sensing and communication into a single system, where they previ-
ously competed for various types of resources. On the other hand, sensor and
communication fusion also seeks a deeper level of integration, where these two
functionalities are no longer seen as separate end goals but are co-designed to
achieve mutual benefits through communication-assisted sensing and sensing-
assisted communication. However, the realization of such technologies relies
on the collaboration of interference-free and mutually supportive sensor com-
munication systems, leading to the rapid evolution of sensor fusion and inte-
gration technologies.

In the framework of ISAC, it is necessary to divide the entire architec-
ture into different aspects. Based on different levels, it can be divided into
system-level division and physical-level division. Based on these two divisions,
further discussions can be conducted on various aspects. In light of this di-
rection, recent research regarding sensing and communication fusion can be
further divided into system-level collaboration, physical-layer collaboration,
and physical-layer integration. The following chapters will introduce the re-
search progress and the latest developments in these three areas.

System-level collaboration: In the system-level division, the discussion
revolves around how to integrate the two systems of sensing and commu-
nication. Classification is based on the principle of who assists whom, thus
resulting in the categorization of ISAC systems into communication-assisted
sensing (CAS) systems and sensing-assisted communication (SAC) systems.
In the field of sensing, cooperative communication between different devices
is employed to communicate the signals obtained from each sensing device,
breaking the limitations of a single hardware unit to achieve higher preci-
sion and lower cost in positioning or environmental sensing. This is known as
communication-assisted sensing systems. On the other hand, sensing-assisted
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FIGURE 9.1
Illustration of CRC and DFRC systems.

communication systems utilize sensing-related technologies to obtain more ac-
curate channel information, thereby increasing communication capacity and
reducing error rates caused by environmental estimation errors. The chal-
lenges in system-level collaboration mainly lie in the communication between
different systems, requiring the establishment of clear standards. Additionally,
due to the diverse application scenarios of sensing and communication, most
existing research focuses on specific environments and specialized model de-
signs, making it challenging to extend to various environmental applications.
A standardized framework needs to be defined.

Physical-layer collaboration/integration: In terms of physical-layer
collaboration/integration, as shown in Figure 9.1, it can be broadly divided
into two categories based on whether sensing and communication share hard-
ware devices: collaborative systems with different hardware (also known as
communication and radar coexistence, CRC) and integrated systems with
shared hardware (also known as dual-functional radar and communication,
DFRC) in the field of radar sensing. Unlike system-level collaboration, which
focuses on improving application-layer performance, research in the physical
layer aims to reduce mutual interference between the two functionalities and
further enhance the performance of both systems through signal processing
at the physical layer. Current research on physical-layer collaborative systems
focuses on eliminating mutual interference between different hardware devices.
This can be achieved by properly allocating natural resources such as time,
frequency, space, and energy, or by adding encoding to increase additional
degrees of freedom and reduce or avoid interference. The research direction
in this regard can involve related issues in interference handling in traditional
wireless communication. However, mathematical models need to consider cer-
tain signal processing characteristics specific to radar sensing, such as clutter,
first-order reflection, and radar cross-section (RCS). Depending on the pres-
ence or absence of a central control unit, different processing approaches can
be adopted, which will be discussed subsequently.
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FIGURE 9.2
Illustration of the research directions in ISAC physical-layer collabora-
tion/integration.

As for physical-layer integrated systems, the goal is to achieve both com-
munication and sensing functionalities using a single hardware unit. The
design focus is on enhancing the performance between sensing and communi-
cation. Current research primarily considers designs for specific environmental
applications. The design challenges at the physical layer mainly revolve around
the lack of clear performance evaluation metrics, the absence of appropriate
benchmarks for comparison, and significant differences in design scenarios.
Currently, there is no recognized testing environment. Moreover, there is no
consensus on the direction of technical development, which can be categorized
into three main approaches: design based on traditional communication wave-
forms, design based on traditional sensing waveforms, or the development
of an entirely new waveform. Systems based on traditional communication
waveform design need to overcome issues such as poor sensing performance
or the need for more complex signal processing. Systems based on traditional
sensing waveform design have good sensing performance (longer range, higher
resolution, lower false alarm rates), but the challenge lies in how to add com-
munication signals to the sensing signals while meeting the high transmission
rate and low error rate requirements of existing communication networks.
Designing a completely new waveform requires developing a suitable sensing
fusion metric and designing a waveform that meets its standards, which is
highly challenging and would require significant changes to the hardware de-
sign of existing devices. Therefore, its commercial strategic value is relatively
low. We summarize the research directions of physical-layer collaboration and
physical-layer integration in Figure 9.2 for easy reference. Although the three
approaches mentioned above each have their advantages and disadvantages,
the network applications of sensing fusion communication are highly diverse.
Therefore, the design direction can be determined based on specific scenar-
ios. For example, in the case of connected vehicles, higher sensing accuracy
is required, making a system based on traditional sensing waveform design
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a suitable approach. On the other hand, applications such as drone surveil-
lance and the Internet of Things (IoT) require lower sensing performance but
have higher communication requirements. In such cases, a system based on
traditional communication waveform design can be considered. To understand
the unique requirements of different ISAC scenarios, we further discuss com-
mon performance metrics in ISAC systems and bring out the consideration of
different ISAC scenarios in the next section.

9.3 Performance Requirements in Common ISAC
Scenarios

When evaluating ISAC system performance, it is necessary to use mathemat-
ical performance metrics to assess the quality of ISAC systems. Owing to
the fact that both sensing and communication have their own performance
metrics, this section will explore the trade-offs between the metrics and per-
formance used in communication and sensing systems to bring out the cur-
rent requirements in terms of sensing and communication functionalities in
common ISAC scenarios. We first introduce the commonly used performance
metrics of current sensing systems.

Detection: Detection refers to making binary/multinomial decisions on
the state of sensing targets under given noise and/or interference condi-
tions [179]. The states of these sensing targets typically include the presence
or absence of the targets. If system decisions are involved, they can be cate-
gorized as follows: the detection rate (or true positive rate) when the target
truly exists, the miss detection rate (or false negative rate) when the target
truly exists but is incorrectly determined as absent, the false alarm rate (or
false positive rate) when the target truly does not exist but is incorrectly
determined as present, and the correct rejection rate when the target truly
does not exist and is correctly determined as absent, as shown in Table 9.2.
When evaluating the performance of sensing systems, the detection rate and
false alarm rate are often the main metrics used to assess the system’s de-
tection capability. The detection rate provides an indication of the system’s
ability to correctly identify the presence of targets, while the false alarm rate
represents the likelihood of falsely detecting targets in the absence of actual

TABLE 9.2
The diagram of making a decision on the state of a sensing target.
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targets. These two metrics are commonly used because the miss detection rate
can be derived from the detection rate, and the correct rejection rate can be
derived from the false alarm rate. In order to determine the detection rate and
false alarm rate, detectors often employ a constant false alarm rate (CFAR)
mechanism [180] to determine a threshold for identifying peaks of targets in
the Range–Doppler (RD) map.

Estimation: Estimation refers to the extraction of useful parameters of
the sensed object from observations contaminated by noise and/or interference
[179]. This may include estimating the target’s distance, velocity, angle, or
other relevant parameters. The performance of estimation is often evaluated
using metrics such as mean square error (MSE) and Cramer Rao Bound (CRB)
to assess the estimation capability. The mean square error is defined as the
average of the squared difference between the true parameter value and its
estimated value. It provides a measure of the accuracy of the estimation. On
the other hand, the CRB is defined as the lower bound on the variance of any
unbiased estimator for the parameter. It is calculated as the reciprocal of the
Fisher information, which quantifies the accuracy of an estimator [181]. In the
context of sensing and communication, the CRB, particularly for angles, can
be used as a performance metric to optimize the waveform of radar sensing
and communication systems.

Ambiguity function: Information about the parameters of the target is
obtained by comparing the received echo signal with the transmitted signal.
Interference or noise limits the ability to detect the presence of the sensing
echo signal. Similarly, noise also limits the reliability of detecting features
within the sensing echo signal. In order to achieve reliable detection, the echo
signal should be larger than the noise. The influence of this noise can typi-
cally be minimized by using a matched filter. The matched filter maximizes
the signal-to-noise ratio of the echo signal in the presence of additive noise.
The matched filter can be applied to detect unknown signals by correlating
the known signal with the unknown signal. This is equivalent to convolving the
unknown signal with the delayed conjugate of the known signal. This concept
is used for optimal detection of ambiguous functions, where the ambiguous
function represents the response of the matched filter to both the matched
signal and the Doppler-shifted signal. The ambiguous function can be written
in the following form:

X (τ, fd) =
∫ ∞

−∞
s(t)s∗(t− τ)ej2πfdtdt. (9.1)

Here, s(t) represents the transmitted signal, τ represents the time delay, and
fd represents the Doppler shift. While the ambiguous function is rarely used
as a basis for practical system design, it serves as a representation of the
limitations and utility of specific sensing waveforms. It serves as a design and
evaluation tool [182,183].

Conditional mutual information: In ref. [184], the author approaches
the performance of sensing waveforms from the perspective of information
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TABLE 9.3
The comparison between sensing mutual information and communication ca-
pacity.

theory. It is assumed that the parameters of the target have statistical char-
acteristics, typically assumed to follow a Gaussian distribution. In the case of a
known transmitted waveform, the degree of dependence between the observed
echo and the target parameters indicates the ability to extract the target pa-
rameters from the received echo. When using conditional mutual information
as a performance metric, the transmitter needs to assume the second-order
statistical characteristics of the known target parameters [185, 186]. Unlike
the channel capacity in communication, which focuses on the statistical char-
acteristics of the transmitted signal and assumes a known channel, percep-
tion is interested in channel information, i.e., the target parameters, while
assuming a known transmitted signal. The comparison between communica-
tion and perception from the perspective of information theory is shown in
Table 9.3 [128, 131]. The advantage of using conditional mutual information
as a performance metric is that it allows for waveform design similar to com-
munication channel capacity. For example, in refs. [184,185], the water-filling
technique is used for subcarrier power allocation in OFDM. In ref. [131], it
has been shown that maximizing conditional mutual information is equivalent
to minimizing the mean square error of the target pulse response. Although
there is currently no literature that rigorously proves the direct relationship
between optimizing conditional mutual information and improving sensing
performance, there is a strong correlation between optimizing conditional mu-
tual information and optimizing signal-to-noise ratio. Therefore, many studies
still use this performance metric for optimization design. We then introduce
the common performance metrics of current communication systems.

Reliability: During wireless transmission, various factors such as inter-
ference, path loss, and fading, as well as thermal noise generated by electronic
components at the receiver, can introduce errors during signal demodulation.
Reliability, therefore, measures the ability of a communication system to re-
duce or correct these erroneous signals. Commonly used metrics for reliability
include outage probability, bit error rate, symbol error rate, and frame error
rate.
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Efficiency: Successful transmission of information comes at the cost of
wireless resources, such as spectrum, space, and energy. Efficiency, therefore,
serves as a benchmark to evaluate how much information can be successfully
transmitted from the transmitter to the receiver given the limited available
resources [187]. Spectral efficiency and energy efficiency are widely adopted
and defined as achievable rates per unit bandwidth/energy, measured in bits
per second per hertz or bits per channel use, and bits per second per joule,
respectively. Additionally, channel capacity, coverage range, and the maximum
number of serviced users are also important efficiency indicators.

Signal-to-interference-plus-noise ratio (SINR): The SINR repre-
sents the ratio of the desired signal power to the combined interference and
noise power. It is a performance metric in wireless communication that mea-
sures communication quality. SINR has a high correlation with channel capac-
ity, hence improving SINR can enhance both communication reliability and
channel capacity. Furthermore, improving SINR in sensing systems also con-
tributes to enhanced detection rates. Therefore, SINR can be utilized in both
sensing and communication systems.

In the previous section, we discussed an overview of common applications
and scenarios in ISAC systems, along with their respective challenges. In this
section, we further provide the required (or inherently existing) communica-
tion and sensing system parameters for these scenarios, as shown in Table 9.4,
to conclude the discussions.

9.4 The Trade-off between Communication and Sensing
Performance

Based on the above discussions, one can notice that wireless resources, such
as spectrum and power resources, are shared between the sensing and commu-
nication functionalities. As a result, it is important to know those trade-offs
so that ISAC system designers can provide advanced designs to meet the de-
sired requirements of both sensing and communication functionalities simul-
taneously with the limited resources budget. In this section, we will provide
several real examples of ISAC designs for this purpose.

Detection vs. communication: In the first example, we consider the
design scenario in ref. [188] to balance the detection probability as a sensing
performance metric and the achievable rate as a communication performance
metric. In the considered scenario shown in Figure 9.3, an ISAC transceiver
transmits useful information to a communication user and transmits a radar
signal to provide surveillance service simultaneously. To do so, a commu-
nication waveform sC(t) with transmit power PC and a sensing waveform
sR(t) with transmit power PR are transmitted from the transmitter side. To
avoid mutual interference, it is assumed that orthogonal resource planning
is applied in the time or frequency domain during the transmission process.
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TABLE 9.4
The comparison between sensing mutual information and communication ca-
pacity.

Moreover, a passive sensing receiver is also employed to finish the sensing pro-
cess by comparing the received sensing signals from the direct channel and the
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FIGURE 9.3
Illustration of the joint passive sensing and communication scenario.

surveillance channel to detect whether targets exist in the region of interest or
not, as shown in Figure 9.3. To tackle the interested power resource allocation
problem, an optimization problem is considered:

max
PC,PR

PD s.t. R ≥ Rth, PR + PC = PT. (9.2)

In Eq. (9.2), PD is the radar detection probability, R = log(1 + PCγC) is the
achievable rate, where γC is the communication channel gain over the noise
power, Rth is the achievable rate threshold, and PT is the total power con-
straint. Hence, the physical meaning of Eq. (9.2) is to maximize the radar
detection probability while satisfying the achievable rate threshold by allocat-
ing the transmit power resource in the transmitter side. Furthermore, from
the sensing perspective, the passive sensing receiver can detect the existence
of targets in the surveillance channel by correlating the received signals from
the surveillance channel and the direct channel. Hence, for the interested de-
tection problem, by sampling the received signals as L time-domain samples,
the hypothesis when targets do not exist in the surveillance channel can be
expressed as:

H0 :

{
yd = γdGdsR + nd

ys = ns

, (9.3)

where yd and ys are the received signals from the direct and surveillance
channels, Gd is a L× L unitary delay-Doppler operator metric for the direct
channel, γd is a scalar coefficient of the direct channel, and nd and ns are the
additive white Gaussian noise (AWGN) with noise power as σ2. Similarly, the
hypothesis when targets exist in the surveillance channel can be expressed as:

H0 :

{
yd = γdGdsR + nd

ys = γsGssR + ns

, (9.4)

where Gs is a L × L unitary delay-Doppler operator metric for the surveil-
lance channel and γs is a scalar coefficient of the surveillance channel. By
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FIGURE 9.4
Illustration of the joint active sensing and communication scenario.

employing a generalized likelihood ratio test (GLRT) detector, the radar de-
tection probability PD in the high direct-path signal-to-noise ratio region can
be approximated as

PD ≈ Q1(

√
2PR|γd|2

σ2
,
√
2γ), (9.5)

where Q1(a, b) is the first-order Marcum Q-function with parameters a and b,
and γ is the detection threshold. Then, since the power resources constraint
PR + PC = PT holds, the detection probability can be further expressed3 as

PD ≈ Q1(

√
2(PT −

1

γC
(2Rth − 1))

|γd|2
σ2

,
√
2γ). (9.6)

In Eq. (9.6), one can notice that the radar detection probability PD is related
to the communication achievable rate Rth. More precisely, higher PD will
result in a sacrificed Rth and vise versa, being the design trade-off of the
considered ISAC system.

Estimation vs. communication: Next, we further consider a more com-
plex case, where time, frequency, and power resources are reused for sensing
and communication purposes simultaneously to see the trade-off between sens-
ing performance and communication performance. To do so, we consider a
scenario shown in Figure 9.4, where an ISAC transmitter with Nt transmit
antennas and Nr ≥ Nt receive antennas are communicating with K single-
antenna users and monitoring an interested target simultaneously. By employ-
ing a joint ISAC waveform X ∈ CNt×L with L timeslots for both purposes, the
echo signal received by the transmitter for sensing purposes can be expressed
as

YR = GX+NR, (9.7)

3Please see ref. [188] for the derivation details.
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whereG ∈ CNr×Nt is the target response matrix andNR is the AWGN matrix
with noise power as σ2. On the other hand, the received signal on the user
side for communication purposes can be expressed as

YC = HX+NC, (9.8)

where H = [h1,h2, ...,hK ]H ∈ CK×Nt is the communication channel matrix
and NC is the AWGN matrix with noise power as σ2.

Assuming maximum likelihood estimation (MLE) of G is adopted as Ĝ =
YRX

H(XXH)−1 4, the mean square error of the estimation can be expressed
as

E{||G− Ĝ||2} = σ2
RNr

L
tr(R−1

X ), (9.9)

where RX = 1
LXXH is the sample covariance matrix of X. Hence, the ISAC

waveform X design problem concerning both target estimation performance
and communication performance can be expressed as

min
X

tr(R−1
X ) s.t. ||X||2F ≤ LPT , ci(X) ⊵ Ci,∀i. (9.10)

In Eq. (9.10), ⊵ can be ≤, ≥, or =, and ci(X) represents a communica-
tion quality of service function constrained by Ci, such as per-user signal-to-
interference ratio (SINR), sum-rate, and SNR. Furthermore, from the sensing
perspective,Xmust be full-rank (i.e., with rankNt) to guarantee the existence
of R−1

X . In other words, all available spatial degrees of freedom (DoF) will be
utilized for sensing purposes. However, from the communication perspective,
the number of DoFs is limited by min(Nt,K) and K ≤ Nt holds for almost all
the real cases, especially for massive MIMO scenarios. Typically, for a rank-K
data matrix SC ∈ CK×L to support K streams for K users, a linear precoder
can be employed as X = WCSC, where WC = [w1,w2, · · · ,wK ] ∈ CNt×K to
ensure the rank of X as K. In light of this direction, in the normal case, where
K < Nt, to ensure the sensing functionality, one way to do so is to augment
the data matrix SC by adding at least Nt −K sensing streams SC, contain-
ing random information but ensure the orthogonality to the data streams
SC. Hence, the precoding matrix will also be augmented to let the precoding
process be as

X = [WC,WA]

[
SC

SA

]
= WCSC +WASA, (9.11)

ensuring the full-rank of X. However, adding those sensing streams is harmful
to communication performance. To elaborate, the per-user SINR from the
communication perspective can be expressed as

γk =
|hHk wk|2∑K

i=1,i̸=k |hHk wi|2 + |hHk WA|2 + σ2
C

,∀k. (9.12)

4Please see ref. [189] for the derivation details.
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In Eq. (9.12), the first term in the denominator is the multi-user interference
and the second term is the interference introduced by the sensing streams.
In conclusion, one can notice that to ensure the normal functioning of the
estimating procedure, communication performance is sacrificed by the reduced
per-user SINR. The above two examples reveal the conflicts of sensing and
communication performance due to the resource-sharing nature. As a result,
how to design an ISAC system to satisfy both needs by optimally allocating
limited and shared resources becomes the core design concept and the most
important research topic in this area. For readers who want to further study
the trade-off in ISAC systems from the theoretical perspective, we refer to
refs. [190–192] for more information. In the next chapter, we will provide
a systematic review of the current research progress in this direction to let
readers become familiar with the ISAC transceiver design topics.



10

ISAC Transceiver Design
Principles

10.1 Radar-Assisted Communications

In this section, we provide case studies to see how the ISAC framework can
help current systems achieve the strict performance requirements of different
applications. In terms of radar sensing-assisted communication, we present
the following three case studies to demonstrate its functionalities.

Radar sensing-assisted design of highly directional communica-
tion signals [193]: Establishing high-speed vehicle-to-vehicle (V2V) com-
munication links with narrow beamwidths presents challenges due to different
network spectrum technologies. A beam that is too narrow may miss the in-
tended receiver, while a beam that is too wide can result in signal-to-noise
ratio (SNR) losses. Therefore, radar-assisted communication utilizes the high-
precision sensing capabilities of radar to establish V2V communication links.
The V2V communication link, as shown in Figure 10.1, involves multiple ve-
hicles and objects distributed evenly in the instantaneous time domain. In
this simulation scenario, the yellow autonomous vehicle (ego vehicle) seeks to
communicate with the receiver of another vehicle based on its own position
and driving angle information. The core idea is to leverage the objects de-
tected by the radar sensors of the autonomous vehicle to identify a specific
object in the environment that corresponds to the intended vehicle receiver.
Finally, a highly directional narrow beam signal is designed to be received by
that vehicle’s receiver. What makes this approach special is that, in addition
to utilizing the high-precision sensing results of radar, it can also combine dis-
tributed methods to enhance communication performance. This involves using
the radar sensing results of each vehicle and the GPS results communicated by
neighboring vehicles to calculate data correlations. Data correlation entails as-
sociating the coordinates of all objects detected by radar sensing with the GPS
data of the vehicles. This method relies on global coordinate system transfor-
mations and utilizes the computation of Kullback–Leibler divergence (KLD)
as shown in Eq. (10.1) to solve optimization allocation problems. Ultimately,
it is demonstrated that in V2V communication, when high-reliability relative
and absolute position information is available, radar sensing-assisted design of
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FIGURE 10.1
Illustration of the considered V2V communication scenario.

highly directional communication signals can avoid the use of time-consuming
channel estimation methods and achieve higher SNR communication perfor-
mance.

D(f∥g) =
∫
f(X ) log

(
f(X )
g(X )

)
δX

= f(Θ) log(
f(Θ)

g(Θ)
) +

∫
f(X ) log(f(X )

g(X )
)dx

= D(ρf∥ρg) + ρfD(ρf∥ρg). (10.1)

Radar sensing-assisted secure communication [194]: In a dual func-
tional radar and communication (DFRC) system, the integration of radar sens-
ing and communication functions is achieved through the design of probing
waveforms that carry communication signals and data. Clearly, such opera-
tions raise security concerns, which are often overlooked in existing DFRC
literature. It is well-known that typical radar sensing requires concentrating
the transmitted power in the direction of interest to obtain accurate esti-
mations of targets. However, in the case of DFRC transmission, the embed-
ded critical information in the probing waveform may be exposed to radar
sensing targets, which could potentially be eavesdroppers. Therefore, infor-
mation security must be considered in DFRC design. Given the dual func-
tionality of DFRC systems, confidentiality issues can be addressed from ei-
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FIGURE 10.2
Illustration of the dual-function radar communication system with target ob-
jects as potential eavesdroppers.

ther the radar sensing or communication perspective. To the best of our
knowledge, most of the existing works on secure transmission in DFRC sys-
tems rely on the assumption of accurate knowledge of channel state infor-
mation (CSI) at the transmitter. This case study considers a dual-function
multiple-input multiple-output (MIMO) DFRC system, consisting of a DFRC
base station, legitimate users, and potential eavesdropper targets, as shown
in Figure 10.2. The DFRC system is equipped with a uniform linear array
(ULA) that serves multiple legitimate users while sensing target objects. Im-
portantly, these target objects are assumed to be potential eavesdroppers who
may intercept the communication messages transmitted from the base station
to the legitimate users. To ensure transmission confidentiality, this case study
introduces artificial noise (AN) at the transmit signal and formulates an op-
timization problem by minimizing the SINR received at the radar sensing
targets while guaranteeing the desired SINR for legitimate users. Initially, the
ideal scenario is that both the target angles and CSI are accurately known.
The scenario is further extended to a more general case with target position
uncertainties and CSI errors, leading to the proposal of robust optimization
methods to ensure performance under worst-case scenarios.

Radar sensing-assisted beam alignment [195]: In future vehicle net-
works, sensing and communication functionalities will be intertwined. This
case study investigates the use of DFRC technology for radar sensing-assisted
predictive beamforming design in vehicle-to-infrastructure (V2I) communica-
tions. The case study considers an mmWave mMIMO Roadside Unit (RSU)
serving multiple vehicles on the road. To communicate with the RSU, each
vehicle is equipped with MIMO arrays on both sides of the vehicle body. It is
assumed that the vehicles travel on a single-lane straight road parallel to the
RSU antenna array, and the RSU communicates with each vehicle through
line-of-sight (LoS) channels. Additionally, uniform linear arrays are deployed
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FIGURE 10.3
Illustration of the considered V2I scenario model.

on both the RSU and vehicles, as shown in Figure 10.3. The core idea of this
case study is to achieve a reliable communication link through the design of
a general framework. To fulfill this requirement, the RSU needs to acquire
accurate information about the vehicle azimuth angles. On the other hand,
the RSU also needs to know the angles of the RSU relative to each vehicle.
Through this approach, both the RSU and vehicles can use their respective
antenna arrays to form narrow beams precisely directed toward each other.
Conventionally, beam alignment is achieved through beam training, where
periodic pilot signals are transmitted and received over all possible beams
to find the strongest beam pair. However, such schemes inevitably introduce
significant latency and communication overhead due to the need for pilot
signaling and feedback between the transmitter and receiver. To reduce the
overhead generated during beam training, beam tracking can be performed by
updating beam information based on the temporal correlation between con-
secutive transmission blocks, requiring only a small number of pilot signals.
However, considering the high mobility of vehicles, it is preferable to predict
the angle parameters of all vehicles rather than merely tracking them. To ac-
complish measurement and communication tasks in delay-critical vehicle net-
works, this case study proposes a low-overhead beam prediction framework
based on DFRC technology, as shown in Figure 10.4. Experimental results
demonstrate that this approach, utilizing the radar functionality of the RSU,
significantly reduces the communication beam tracking overhead. Further-
more, to improve sensing accuracy while ensuring downlink communication
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FIGURE 10.4
Illustration of the considered low-overhead beam prediction framework based
on DFRC technology.

and rates, a multi-vehicle power allocation scheme is proposed. Simulation
results indicate that the proposed DFRC-based beam tracking approach out-
performs radar-unassisted techniques in terms of tracking performance. Addi-
tionally, the designed power allocation method achieves favorable performance
trade-offs between sensing and communication.

10.2 Communication-Aided Sensings

In terms of communication-assisted sensing, we present the following two case
studies to demonstrate its functionalities.

Communication-assisted sensing for localization [196]: Vehicle po-
sitioning is a critically important topic that has gained considerable attention
in recent times. Navigation, vehicle tracking, and location-based services are
emerging applications that require significant demand for accurate location
information. The Global Positioning System (GPS) has become the practical
standard solution for vehicle positioning issues. However, GPS still suffers from
accuracy and reliability issues. For instance, GPS receivers as standalone po-
sitioning devices may experience positioning errors of up to 50m in multipath
environments such as urban canyons, in addition to potential signal blockages,
such as signal attenuation in tunnels. Despite the consideration of alternative
positioning methods by many researchers, such as the integration of inertial
navigation systems (INS) to enhance GPS positioning, studies have shown that
this approach performs well in short-term GPS signal interruptions. However,
long-term GPS signal interruptions and severe multipath conditions still pose
significant challenges for achieving accurate and reliable vehicle positioning,
which are defects that many applications cannot tolerate. Therefore, it is
suggested to adopt a multi-measurement approach to enhance positioning
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FIGURE 10.5
Illustration of the considered VANET environment.

in the vehicular ad hoc network (VANET) communication environment,
as depicted in Figure 10.5. The core concept is to employ Intervehicle
Communication-Assisted Localization (IVCAL) where vehicles with high un-
certainty in their positioning accuracy transmit requests to nearby vehicles.
Through information sharing with nearby vehicles that have higher positioning
accuracy, the vehicle’s movement information is combined with GPS position
estimation to update its own positioning result, thus achieving highly accurate
vehicle localization.

Next, the execution method of workshop communication-assisted sensing
for localization is explained, in which the Kalman filter and workshop com-
munication system collaboration are employed to improve the robustness and
accuracy of each vehicle’s localization in the workshop communication system
network. The two main units that interconnect the workshop communica-
tion system and the Kalman filter are as follows: the Multipath Detection
Unit (MDU) and the Localization-Enhancement Unit (LEU). The MDU is
capable of detecting the presence of multipath effects in the output of the
Kalman filter. Subsequently, the LEU retrieves information about neighbor-
ing vehicles from the workshop communication system and feeds back the
optimized position estimation results to the Kalman filter. The schematic
diagram of this method is shown in Figure 10.6. Assuming that each vehi-
cle in the VANET environment is equipped with a GPS receiver, INS, and
VANET transceiver, each vehicle utilizes a GPS/INS Fusion Unit (GPS/INS-
FU) to integrate the measurements from INS and GPS with the Kalman filter.
The workshop communication system of each vehicle extracts information re-
lated to the position estimation of nearby vehicles. This information includes
the distance between vehicles, position estimations, and the uncertainty of
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FIGURE 10.6
Architecture of the workshop communication-assisted localization technique.

position estimations of neighboring vehicles. This information can be used
to compensate for the loss of satellite signals and correct errors caused by
multipath effects (assuming not all vehicles in the network are simultaneously
affected by multipath effects). Following this is the multipath detection unit,
which enables vehicles to detect the presence of multipath effects in their po-
sition estimation, triggering the localization-enhancement unit to minimize
positioning errors. The occurrence of multipath effects introduces noise into
the position estimation. When multipath effects are present, the localization
result of the Kalman filter is not optimal. Therefore, the difference between
the estimation values of the Kalman filter and the measurements from GPS
can be used to determine the presence of multipath effects. This case proposes
the use of a neural network for classifying these patterns, designing a classi-
fier capable of identifying measurements affected by multipath influences. The
present study proposes a neural network for classifying these patterns and de-
signs a classifier capable of recognizing multi-path interference measurements.
The case study selects a feedforward backpropagation network (FFBN), which
belongs to the category of artificial neural network (ANN) supervised learn-
ing, as the classifier for multi-path interference measurements. Furthermore,
the study introduces enhanced units for localization. To mitigate the degrada-
tion of signals affected by multi-path interference, each vehicle communicates
with its neighboring vehicles in the VANET environment. These neighboring
vehicles are either unaffected or less affected by multi-path interference. Thus,
it is crucial for the system to identify the measurement values of neighbor-
ing vehicles that can serve as indicators. The measurement values obtained
through inter-vehicle communication assist vehicles in selecting the best three
neighboring vehicles, enabling more accurate self-localization, as depicted in
Figure 10.7.
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FIGURE 10.7
Example scenario of the optimization problem in an ideal situation.

In this case study, the accuracy of vehicle positioning is represented by the
variation between the time-updated estimation values of the Kalman filter and
the measurements from the GPS receiver. When a vehicle does not experience
any multi-path effects, the accuracy of its GPS is high, and the variation is
low, making it suitable as a neighboring vehicle that aids in vehicle localization
under inter-vehicle communication conditions. In other words, the position of
this vehicle has minimal uncertainty and can be used as a location anchor for
its neighbors, and vice versa. Typically, after experiencing multi-path effects,
the Kalman filter estimation requires periodic updates to converge to a low-
error vehicle position estimation. Each vehicle retains a record of previous
variation values; therefore, even after the vehicle leaves the multi-path region,
the expected level of uncertainty in the position estimation is anticipated to
persist for a considerable period. Vehicles encountering such situations will
not serve as location anchors. Vehicles with high levels of uncertainty correct
their position estimations with the assistance of communication with three
neighboring vehicles, as shown in Eq. (10.2).

x̂i
k+1/k+1 = arg min

xi
k+1/k+1

∑
j∈I

(di,j − ||x̃i
k+1/k+1 − xj

k+1/k+1||)
2. (10.2)

Minimization of interference in vehicle radar sensing assisted by
vehicular communications [174]: With the development of autonomous
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vehicles, an increasing number of vehicles are equipped with multiple au-
tomotive radars, leading to significant mutual interference between radars.
Vehicle-to-everything (V2X) communication is a common approach to coor-
dinate automotive radars and reduce mutual interference between them. In
this case study, the positional relationship between two mutually interfering
radars is analyzed. The assumption is that each vehicle is equipped with one
radar in the front and one radar on the side, with different sensing direc-
tions. The interference between the rear radar (primarily used for parking)
and the other radars can be ignored. Each vehicle is equipped with a V2X
system, operating in different frequency bands from the automotive radars.
The interference from different types of radars is evaluated based on a Pois-
son point process (PPP). A novel framework is proposed to allocate spectrum
resources to automotive radars using the V2X communication system to re-
duce interference. Similar to the traditional frequency-division multiplexing
(FDM) approach, the frequency band is divided into several sub-bands. How-
ever, the number of sub-bands is limited, while the number of automotive
radars is large, making it impossible for the mobile communication system to
assign non-overlapping orthogonal frequency bands to each radar. Therefore,
in the proposed framework of this case study, the core idea is as follows: the
base station uses a location- and direction-based greedy algorithm to allocate
reusable spectrum resources, aiming to minimize interference between radars.
The minimum spectrum resources required for zero interference are analyzed
for different scenarios.

Finally, we consider the following use case for joint communications and
target localization

Unmanned aerial vehicle (UAV) trajectory design for ISAC and
target localization [197]: The objective of this case study is to achieve an
ISAC system in the sky, as depicted in Figure 10.8. The scenario involves
a UAV, a communication user receiving ISAC signals, and a target being
sensed by the UAV. The core idea is as follows: in the ISAC system in the
sky, the UAV serves as both a base station for communication purposes and
a single-site radar for sensing and localization, flying over a designated area.
It transmits downlink communication signals to ground communication users.
Simultaneously, the same transmitted signals are used for radar sensing and
localization. Specifically, the UAV emits signals toward the target, and the
target’s position is estimated by receiving and processing the reflected echoes.
By designing an optimized UAV flight trajectory, the performance of com-
munication and sensing can be improved. The UAV’s flight waypoints, hov-
ering points, and flight speed are determined to simultaneously minimize the
Cramér-Rao bound (CRB) for target localization and maximize the downlink
communication rate for communication users. However, in previous studies
on UAV applications for ISAC, the focus was mainly on the energy con-
sumption related to signal transmission. In practical scenarios, the energy
required for UAV flight and hovering is a major component of energy con-
sumption. Therefore, considering the limited capacity of the UAV’s battery,
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FIGURE 10.8
Illustration of the UAV-based ISAC system.

this case study incorporates energy constraints in the design of UAV flight
trajectories. In addition, in reality, the UAV does not initially know the tar-
get’s position. To design precise UAV trajectories for improving ISAC perfor-
mance, this study proposes a multi-stage trajectory design method to develop
effective target localization algorithms. Finally, the superior performance of
the proposed trajectory design is validated.

10.3 Waveform Design Principles

Simultaneously meeting the requirements of sensing and communication tasks
poses significant challenges to signal processing in the context of signal and
information integrated receiver (SIIR). Generally, an SIIR receiver should be
able to demodulate useful information from the communication signal while
detecting/estimating targets from the echoes. If the two signals do not over-
lap, traditional signal processing methods can be employed since sensing and
communication do not interfere with each other. However, if the two signals
fully/partially overlap in the time and frequency domains, mutual interference
occurs, which is the cost incurred to achieve integrated gain.

New waveform (without considering specific waveforms): In cur-
rent SIIR research, no waveform with a fixed mathematical form specifically
designed for sensing and communication has been devised. The concept of de-
signing new waveforms disregards existing sensing and communication wave-
forms and focuses on achieving sensing and communication effects simulta-
neously through the design of second-order statistical characteristics of the
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FIGURE 10.9
Illustration of the scenario with multiple users and a single target in the
downlink signal transmission phase.

transmitted signals. In the design of new waveforms, waveform design for the
transmitted signal is based on channel state information (CSI) to optimize
the second-order statistical characteristics of the transmitted signal, aiming to
achieve high achievable rates and reduce user interference. In the SIIR frame-
work, as sensing functionality is incorporated, the design of precoding needs to
allocate degrees of freedom to sensing. Therefore, the precoding design in SIIR
optimizes sensing and communication in the spatio-temporal resource domain.
However, for sensing, prior knowledge, specifically knowledge of the angles of
the sensed targets, is required for precoding design. Thus, many papers skip
the so-called search mode and directly enter the tracking mode, assuming per-
fect knowledge of the angles of the sensed targets before performing optimal
precoding design. In the previous sections, individual performance metrics for
sensing and communication were mentioned. In precoding design, the focus is
on specific performance metrics, which can be classified as precoding designs
centered around the performance metrics of radar sensing, centered around
the performance metrics of communication, or designs that trade-off both
performance metrics.

Radar sensing performance-centered precoding designs optimize the design
based on the performance metrics of radar sensing. In ref. [181], a mono-static
DFRC system with multiple users and a single target in the downlink signal
transmission scenario is considered, with a focus on the estimation perfor-
mance of sensing, as shown in Figure 10.9. The CRB is used as the objective
function to minimize, aiming to minimize the CRB while imposing the users’
SINR as a constraint in precoding design. This paper considers point targets
and extended targets, which lead to different solutions in terms of the CRB.
In the case of a single-user single-point target scenario, the solution is simple
and intuitive, where the designed beamforming weights fall into the subspace
of the steering vector and the communication channel’s span. For the case of



244 ISAC Transceiver Design Principles

FIGURE 10.10
Illustration of the scenario with single multiple-antennas user and multiple
targets in the downlink signal transmission phase.

multiple users and a single point target, semi-definite relaxation (SDR) is used
to relax the problem to a convex problem, and for the case of extended targets,
additional probing signals (orthogonal to the original transmitted signals) are
added to the transmitted signal matrix since the Fisher matrix needs to be
full rank. Similar to ref. [181], ref. [198] considers the downlink signal trans-
mission scenario with multiple users and a single target but assumes imperfect
CSI, accounting for channel errors with known probability distribution, mean,
and standard deviation. The performance metric used for users is the outage
probability, aiming to constrain the outage probability within a fixed thresh-
old probability. For sensing, the objective is to concentrate the transmitted
signal’s energy as much as possible on the desired observed angle (assuming
it is known). Therefore, the power in a specific direction is related to the co-
variance matrix of the transmitted power and the echo, which is associated
with precoding. Thus, the problem aims to maximize the power at a specific
angle while satisfying the communication’s outage probability constraint.

Communication performance-centered precoding designs focus on optimiz-
ing communication performance while meeting the required sensing perfor-
mance. In ref. [56], the precoding design for downlink signal transmission with
multiple antennas and multiple targets is considered, as shown in Figure 10.10.
The objective is to minimize the minimum Euclidean distance between noise-
less received signal vectors while considering sensing constraints and given
power constraints. The goal is to make the received signal vectors seen at the
communication receiver as separable as possible, which is equivalent to reduc-
ing symbol error rates and increasing channel capacity. The sensing constraint
aims to shape the transmit beampattern to approximate the desired sensing
beampattern. Common communication metrics such as achievable rate, spec-
tral efficiency, or energy efficiency assume Gaussian distribution of the trans-
mitted signal. However, the amplitude of Gaussian signals is infinite, leading
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to distortion in signals transmitted by power-limited transmitters. Addition-
ally, Gaussian signal detection at the receiver becomes more complex due to
the continuous probability distribution function. Furthermore, waveform de-
signs based on the assumption of Gaussian inputs may not perform well when
applied to practical systems with finite alphabet inputs. This paper considers
ISAC beamforming design with more practical finite alphabet inputs, reducing
the problem to a quadratically constrained quadratic programming (QCQP)
problem, which can be transformed into a semi-definite programming (SDP)
problem. The global optimum solution is obtained using the SDR method.
Due to the high complexity of the aforementioned methods, this paper also
provides an approximate solution using deep learning methods.

Precoding designs balancing both performance metrics utilize weighted
sums for design, allowing adjustments in weights to achieve a trade-off be-
tween sensing and communication. Consequently, this type of research has
relatively more publications. In ref. [199], the precoding design for downlink
signal transmission with multiple users and a single target is considered, com-
bining the functionality of MIMO radar sensing with rate splitting multiple
access (RSMA). RSMA is a powerful downlink communication scheme based
on linear precoding rate splitting, which can partially decode multi-user in-
terference (MUI) and treat it as noise, while having inherent robustness to
partial channel state information (CSIT). With RSMA, DFRC precoding is
optimized in the presence of partial CSIT, aiming to maximize the weighted
sum rate under service quality constraints and minimize the mean squared
error between the DFRC beamforming pattern and the MIMO radar sensing
beamforming pattern under ideal conditions. In ref. [200], the precoding design
for downlink signal transmission with a single antenna and multiple users and
targets is considered, as shown in Figure 10.11. The objective is to simultane-
ously minimize the interference energy between users and have the minimum
error between the transmit beamforming pattern and the pure radar sensing
transmit beamforming pattern in the transmit beam direction. In this paper,
the defined multi-user interference (MUI) refers to the difference between the
transmitted signal after passing through the channel response and the desired
demodulated symbols. By adjusting the weights, the overall performance of
DFRC can be improved. Two cases are considered in this paper. The difference
between the two design approaches lies in the assumption of omnidirectional-
ity, which assumes that the waveforms emitted by each antenna are orthogonal
to each other. This allows the formation of a virtual antenna array to improve
angular resolution, making it well-suited for the search mode. In contrast, the
directional approach concentrates the energy on a few specific angles to im-
prove SINR and enhance the accuracy of detection. In ref. [201], downlink link
scenarios with multiple antennas and multiple users with a single target and
multiple targets are considered. The transmitted signal adopts a time-division
multiplexing approach, where the transmission time is divided into segments
for sensing and communication purposes. The design jointly optimizes the
waveforms for the two segments, using communication channel capacity and
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FIGURE 10.11
Illustration of the scenario with multiple users and multiple targets in the
downlink signal transmission phase.

mutual information for sensing with weighted sums as the performance met-
rics. Due to the consideration of mutual information for sensing, the waveform
design is relatively simple (similar to the sum rate in communication). The
weights can be adjusted to balance sensing and communication proportions.
This problem is solved using the water-filling algorithm. In the case of multiple
antennas and multiple users with a single target, the considered problem will
become non-convex, and the paper proposes using weighted minimum mean
square error (WMMSE) to solve it.

The aforementioned pre-coding design exploits simultaneous time-space
resources for waveform design. Apart from waveform design, preceding this
process, power allocation for training and data symbols is performed [202],
based on channel estimation errors to determine the distribution of power
weights. Considering a typical data packet-based signal structure, comprising
training and data symbols, this paper first derives the relevant conditionally
mutual information between sensing and communication under the consid-
eration of training overhead and communication channel estimation errors.
Subsequently, this paper establishes a lower bound on channel estimation er-
rors and optimizes the energy arrangement between training and data symbols
to minimize channel errors. Both training and data symbols can be used for
sensing purposes, whereas data symbols are employed for data transmission.
Based on the optimal energy arrangement, this work provides optimal spatio-
temporal power designs for three scenarios: maximizing mutual information
exclusively for communication and sensing, and maximizing the weighted sum
of mutual information between sensing and communication. In ref. [203], mul-
tiple distributed DFRC transmitters, radar sensing receivers, and communi-
cation receivers are considered, capable of simultaneously performing target
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FIGURE 10.12
Illustration of the considered scenario.

state estimation and message transmission tasks. In this research, the authors
propose a power allocation scheme based on low probability of intercept (LPI)
for distributed MIMO-DFRC systems. The key mechanism of this scheme is
to minimize the total system power by optimizing the transmission power
allocation of different DFRC transmitters, subject to predefined target pa-
rameter estimation accuracy for radar sensing purposes and certain wireless
communication performance. This approach enhances the LPI performance
of the distributed MIMO-DFRC system for communication purposes, thereby
improving overall system efficiency. Closed-form expressions for the Cramér-
Rao Lower Bound (CRLB) are derived to assess target position and velocity
estimation performance, with data transmission rate adopted as the perfor-
mance metric for communication data transfer.

Traditional waveform variations: The widely used communication
waveform is orthogonal frequency division multiplexing (OFDM), which ex-
hibits high flexibility and has been proposed for radar sensing applications
[204]. Integrating sensing and communication using OFDM holds significant
promise and is in line with 3GPP’s envisioned waveforms for 6G systems.
Ref. [205] explores a downlink scenario with a single-user single-target, con-
sidering an interference source that affects the receivers of both DFRC and
communication base stations, as depicted in Figure 10.12. The objective is to
focus the main beam on the target of interest while using sidelobes for commu-
nication message transmission. This requires joint optimization of pre-coding
for each subcarrier, DFRC receiver combiner, and user receiver combiner, with
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FIGURE 10.13
Illustration of the index modulation schemes.

the primary goal being sensing. Since optimizing based on detection rate is
complex, this work employs the Kullback–Leibler divergence (KLD), which is
related to the detection rate, as the performance metric. KLD measures the
difference in probability distributions between received signals when the tar-
get is present and when it is absent. The communication part is constrained
using the error rate. The proposed Alternating Direction Sequential Relax-
ation Programming (ADSRP) algorithm efficiently addresses the non-convex
optimization problem. Ref. [206] considers a downlink scenario with single-
antenna multiple-users and multiple-targets. The goal is to design trans-
mit waveforms to minimize both communication mutual interference and the
weighted sum of sensing transmit beam patterns, while adhering to peak-
to-average power ratio (PAPR) constraints. Ref. [207] investigates a multi-
antenna, multi-user, single-target downlink scenario with incomplete channel
state information at the receiver. To make the transmit beam pattern in-
dependent of the selected data symbols, the work utilizes differential phase
shift keying (DPSK) as the non-coherent modulation scheme. The optimiza-
tion problem aims to maximize the radar objective function while achieving
improved sensing for target localization, under average transmit power, spe-
cific direction power, and user error rate constraints. The objective function
concerns sensing performance indicators for each subcarrier, related to SINR,
defined in detail in ref. [207]. The work provides a solution based on a three-
step framework involving alternating optimization, convex restriction, and
minimax optimization.

In radar sensing waveforms, frequency modulated continuous wave
(FMCW) waveforms are commonly used in automotive applications due to
their superior estimation capability. However, their limited data rate presents
a drawback when combined with communication. To address this, the con-
cept of index modulation has been proposed [208–210], as illustrated in Fig-
ure 10.13. In this context, let us consider a simple example, as depicted
in the aforementioned figure. Index modulation employs distinct resource in-
dices to encode bits. Specifically, for antenna and frequency, we can distinguish
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different signal bit combinations. For instance, let us assign the first antenna
with frequency as f1, which represents bit sequence “00”. Similarly, the first
antenna with frequency can be assigned as f2, representing “01”. Furthermore,
the second antenna with frequency could be assigned as f1, representing “10”,
while the second antenna with frequency could be assigned as f2, representing
“11”. Introducing additional factors such as phase and time would further
augment the number of possible combinations, resulting in an increased total
number of bits, as illustrated in Figure 10.14.

Among traditional waveforms, OFDM offers high flexibility and is there-
fore utilized in the ISAC framework for resource allocation [211]. In ref. [211], a
typical V2X scenario is considered, with a frequency-sensitive target located in
a frequency-selective channel. Hence, efficient allocation of transmission power
on each subcarrier is crucial to ensure both sensing and communication per-
formance. The work proposes a two-stage adaptive power allocation scheme,
as shown in Figure 10.15. In the target search stage, joint optimization of sub-
carrier assignment and power allocation is performed to minimize the total
transmit power of DFRC while considering conditional mutual information
for target detection and specific data rates for communication. In the param-
eter estimation stage, a multi-objective optimization framework is designed to
achieve a trade-off between communication channel capacity and radar sensing
parameter estimation accuracy. Ref. [212] explores a single-user single-target
downlink scenario and investigates the Power Minimization-based Joint Sub-
carrier Assignment and Power Allocation (PM-JSAPA) problem for DFRC,
as shown in Figure 10.16. The PM-JSAPA strategy jointly optimizes subcar-
rier and power resource allocation to minimize the overall transmit power of
DFRC, achieving improved energy efficiency while satisfying conditional mu-
tual information for target parameter estimation and specific data rates for
communication. The problem falls under mixed-integer nonlinear program-
ming (MINLP), known to be NP-hard. To address this, an efficient three-step
resource allocation framework is proposed to solve the resulting optimiza-
tion problem. The first step determines subcarrier assignment for radar and
communication purposes. The second and third steps perform power alloca-
tion for different applications based on the results obtained in the first step.
Finally, numerical simulations demonstrate the superior energy-saving per-
formance of the proposed PM-JSAPA strategy and the effectiveness of the
solution approach, which adopts classic water-filling for power allocation on

FIGURE 10.14
Illustration of the total number of data bits.
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FIGURE 10.15
Illustration of the target search mode and parameter estimation mode.

FIGURE 10.16
Illustration of the considered scenario.

OFDM subcarriers. Ref. [213] discusses power allocation in the ISAC system
and layout design for pilot placement in time-frequency resources, as shown
in Figure 10.17. The study analyzes the impact of power allocation and pilot
placement on system performance and proposes channel estimation and pilot
power allocation designs that optimize both radar sensing and communication
performance.

ISAC special integrated architecture techniques: The ISAC system
incorporates extended techniques based on traditional methods, such as hy-
brid precoding and symbol-level precoding. Conventional precoding designs
typically involve digital precoders, which necessitate RF chains equal to the
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FIGURE 10.17
Illustration of the different pilot placement and power allocation.

number of transmit antennas. However, the cost of RF chains is prohibitively
high, leading to the consideration of hybrid precoding that combines fewer
RF chains with analog precoding. This approach aims to reduce costs while
approaching the performance of pure digital precoding. Hybrid precoding is
considered highly prospective for 6G technology, especially in scenarios requir-
ing a large number of antennas to provide sufficient spatial degrees of freedom
for user and target allocation. Two common types of hybrid precoding are
illustrated in Figure 10.18 [214].

The classification in the figure is based on the number of phase shifters
connected to the RF chain. A lower number of phase shifters result in cost
reduction, though it may lead to performance degradation. In ref. [215], the
concept of sub-connected hybrid precoding is introduced. In this approach,
each transmit antenna requires two phase shifters to achieve beamforming
flexibility and increase degrees of freedom. This research considers outdoor
scenarios, where noise sources such as reflections from trees or buildings need
to be taken into account. Two cases are studied: single-user multi-antenna
single-target, and single-target multi-user single-antenna scenarios. Optimal
designs of DFRC hybrid precoding, user receivers’ hybrid precoding, and pure
digital combiners (for both user receivers and DFRC receivers) are conducted
using an alternating optimization approach. First, the design of DFRC’s pure
digital combiners is optimized while fixing DFRC hybrid precoding and user
combiners. Then, the obtained optimal DFRC’s pure digital combiners are
substituted into the original problem, and consensus Alternating Direction
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Method of Multipliers (consensus-ADMM) is used to design DFRC hybrid pre-
coding and user combiners. In ref. [215], the study focuses on an OFDM system
where each user is assigned one subcarrier (similar to frequency-division mul-
tiplexing). The system involves multi-antenna multi-user single-target config-
uration. DFRC employs sub-connected hybrid precoding, while user receivers
use fully connected hybrid precoding. The objective is to maximize the achiev-
able communication rate while satisfying constraints on the error between the
designed precoder and the ideal precoder for pure sensing. This work consid-
ers two scenarios: multi-antenna single-user single-target and multi-antenna
multi-user single-target. In the former case, an ADMM approach is used to
solve the optimization problem, while in the latter case, weighted MMSE
(WMMSE) is employed. In ref. [216], the focus shifts to multi-antenna multi-
user single-target downlink scenarios. The DFRC system utilizes fully con-
nected hybrid precoding, and finite-resolution phase shifters are assumed for
a more practical representation. Unlike ref. [215], where each user is assigned
one subcarrier, ref. [216] allows all users to share all subcarriers, and wideband
OFDM is considered. As a result, spatial-frequency response needs to be con-
sidered in the presence of path fading, leading to time misalignment between
receiving antennas (inability to separate steering vectors). In the context of
sensing, the goal is to minimize the spatial spectrum matching error (SSME)
between the spatial-frequency response of the DFRC system and the ideal
spatial-frequency response. For communication, the spectral efficiency (SE)
is considered. The optimization problem involves a weighted sum of these
two performance metrics. Due to the complexity of the objective function,
the combiners at the user end are initially assumed to be pure digital to re-

FIGURE 10.18
Illustration of two hybrid precoding architectures.
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FIGURE 10.19
Illustration of the fully-connected, sub-connected, and GoSA architectures.

move the last constraint. The consensus-ADMM is then utilized to solve the
optimization problem. In ref. [217], the consideration is for single-user multi-
target downlink scenarios using OFDM in the terahertz frequency band. This
scenario demands a large number of transmit antennas to counteract severe
path attenuation. The paper considers a two-dimensional rectangular antenna
array, applied to short-range vehicular communications. Due to the need for
a large antenna array, this work employs a group-of-subarrays (GoSA) that is
more cost-effective than sub-connected hybrid precoding, as depicted in the
comparison in Figure 10.19. Unlike sub-connected, GoSA further divides sub-
arrays into Q groups, each sharing the same phase shifters, effectively reducing
the number of phase shifters by Q times.

Conventional block-level precoding designs (as mentioned in previous chap-
ters) target the second-order statistics of transmitted signals, updating the
precoding parameters periodically. Symbol-level precoding, on the other hand,
customizes each symbol in every symbol time, involving nonlinear transfor-
mations (in contrast to the linear transformations in block-level precoding).
Additionally, a key difference lies in handling user interference. Block-level pre-
coding aims to reduce interference from other users by designing the precoder,
whereas symbol-level precoding can focus interference energy into the correct
decoding region, based on the modulation scheme (which determines the de-
coding region). The drawback is the high hardware cost, and the algorithms
can be challenging to implement, as shown in Figure 10.20. In ref. [218], the
focus is on single-antenna multi-user multi-target downlink scenarios. Symbol-
level precoding is employed to design the ISAC system. This research considers
QPSK modulation, where the green region denotes the correct decoding re-
gion. The vector represents the received signal vector. For communication, the
goal is to ensure that the received signal vector falls within the correct decod-
ing region. Any deviation beyond the decoding region would be considered an
error due to noise interference. As a result, the communication performance
metric is defined as the distance from the received signal vector to the bound-
ary of the correct decoding region. For sensing, the instantaneous transmit
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FIGURE 10.20
Illustration of the block-level precoding and symbol-level precoding.

beamforming pattern serves as the performance metric, with the aim to mini-
mize the error between the designed and ideal transmit beamforming patterns
for pure sensing.

10.4 Resource and Power Allocation

The primary application scenario of physical layer cooperation is the coex-
istence of sensing and communication using different hardware devices, also
known as CRC in the radar sensing field. Due to the separate devices used
for sensing and communication, cooperation between them is particularly
important. By designing appropriate resource allocation to reduce the possi-
bility of interference or control the interval of interference for signal processing,
the functionality of sensing and communication can be achieved. Depending
on the performance requirements, natural resource allocation intervals and
components (such as time, frequency, space, and energy) need to be designed,
or additional degrees of freedom can be achieved through encoding for artifi-
cial orthogonal resource allocation. In the design process, various interference
scenarios of signal models for sensing and communication need to be consid-
ered in different application contexts. The resource allocation can be catego-
rized into five types: time resource allocation, frequency resource allocation,
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FIGURE 10.21
Illustration of the time resource allocation.

space resource allocation, encoding resource allocation, and energy resource
allocation, depending on the specific resources to be allocated. In a broader
sense, resource allocation problems are not necessarily limited to CRC systems
where sensing and communication use different hardware. The main distinc-
tion is that the same resource does not possess both sensing and communi-
cation functionalities. However, in the context of this project, the description
of physical layer cooperation particularly emphasizes resource allocation on
different hardware. The following will introduce the current developments in
research in this area.

Time resource allocation: For time resource allocation, the resources
are divided into different time slots, each dedicated to either sensing or com-
munication, as shown in Figure 10.21. Intervals between sensing and commu-
nication time slots are required to avoid interference. This approach has the
advantage of being operationally straightforward and easily implementable
in existing systems, leading to its wider commercial application. There have
been various improvements designed for current standards, as well as related
research on automotive environments. In time resource allocation, due to the
lack of a unified performance evaluation metric for sensing and communica-
tion, the design can be based on the practical requirements of both systems to
determine the duration of resource allocation for each. Alternatively, sensing-
assisted communication or communication-assisted sensing can be used to
unify the performance evaluation metrics of the two systems. Here is a simple
example: Research concept: By allocating more time to sensing, the accuracy
of channel estimation in communication can be improved, but it also reduces
communication transmission time. Therefore, it is necessary to allocate sensing
time appropriately. By obtaining multipath channels through sensing and uti-
lizing the results with maximum ratio combining (MRC), the communication
performance can be enhanced. The duration of sensing affects the accuracy of
multipath sensing, while the duration of communication affects the transmis-
sion capacity. By combining both aspects, a new metric can be defined, such as
the actual overall achievable transmission rate [219]. The indicator considers
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FIGURE 10.22
Illustration of utilizing beamforming training period for sensing purposes.

the probability of correctly detecting an object and the false alarm rate. The
transmission rate after adopting MRC in the two scenarios mentioned above
is analyzed, and its expected value is taken as the actual overall achievable
transmission rate to measure the time resource allocation. This is applicable
to scenarios involving sensor-communication cooperation systems, such as au-
tomotive and unmanned vehicle communication. The simulated scenarios in
the paper are relatively simple, focusing only on evaluating the channel en-
vironment of dual-site radar sensing and a single obstacle. However, it can
be extended to more complex scenarios, albeit with increased computational
complexity and time resource consumption. Additionally, this study does not
consider the impact of interval spacing.

Time resource allocation is relatively straightforward in implementation.
Another mainstream research direction focuses on studying existing commu-
nication standards and attempts to replace training periods [220], such as
beamforming training periods in 802.11ad, with sensing periods, as shown in
Figure 10.22. In 802.11ad, the beamforming training phase consists of five
stages: Initiator Sector Sweep (ISS), Responder Sector Sweep (RSS), Sector
Sweep Feedback (SSF), and Sector Sweep Acknowledgement (SSA). These
stages involve transmitting training signals to achieve beam alignment be-
tween the base station and users. In research, one can explore the use of these
five time periods’ signals for radar sensing. In practice, time resource alloca-
tion is commonly used in automotive systems. In the application of vehicular
networks, time periods can be divided into sensing periods and communication
periods for communication with roadside units (RSUs) or other vehicles [221].
The current communication scenario requires the adoption of two different
modes: communication with vehicles and communication with RSUs, based
on the M/M/1N queuing theory model. In the above description, we can ob-
serve that research on time resource allocation mainly focuses on the design
of existing standards or practical applications. This is because time resource
allocation is relatively straightforward for hardware design.

Frequency resource allocation: Frequency resource allocation is sim-
ilar to time allocation and is easy to implement. It requires frequency band
spacing to reduce interference between sensing and communication bands. The
mainstream research in frequency resource allocation is based on the OFDM
waveform, which provides flexibility to adopt various waveforms compared
to time resource allocation. Specifically, depending on different communica-
tion channel conditions, required sensing and communication performance,
and transmit power budget, we can design the allocation of OFDM subcarri-
ers to achieve frequency resource allocation. Frequency resource allocation for
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non-OFDM waveforms is less common in research due to the scarcity of spec-
trum resources. The methods that involve frequency allocation with band
spacing are rarely mentioned, although a few studies have addressed it. In
terms of design, it is necessary to establish a unified indicator. In the refer-
enced paper [184], a transmission capacity specific to radar sensing is defined
and integrated with communication transmission capacity. The definition of
radar sensing transmission capacity considers the radar sensing resources in
terms of angle, time, and frequency as communication bits, and transmission
capacity is defined accordingly. In the design process, the required frequency
band allocation is determined by optimizing the total transmission capacity of
sensing and communication. Since the mathematical form is similar to com-
munication transmission capacity, optimization methods for communication
capacity can be applied. In terms of practicality, this approach is less practical
due to the lack of consideration for band spacing. Additionally, the definition
of sensing capacity has not been widely recognized in academia. Therefore, this
research brings more of a conceptual inspiration. Regarding the use of OFDM
waveforms, there is more research available. It involves allocating subcarrier
resources to sensing or communication for frequency resource allocation. Ad-
justing the energy on subcarriers according to individual channel conditions is
also possible. Due to the waveform characteristics of OFDM, there is no need
to consider band spacing, and it provides more flexibility. As an example, the
communication signal can be treated as either interference or useful informa-
tion for sensing, and a mathematical model can be formulated using mutual
information as the evaluation metric for radar sensing. Carrier allocation and
energy distribution can be designed based on this. It can be observed that the
above radar sensing mutual information expressions are similar to traditional
communication capacity, and this mathematical form is valid only when the
channel model follows a Gaussian distribution and the waveform is OFDM.
Although the applicable model is relatively ideal, optimizing based on radar
sensing mutual information provides a good direction.

Spatial resource allocation: Spatial resources refer to the angular di-
versity brought by multiple antennas. In communication, it can provide an-
tenna diversity gain and offer more degrees of freedom to achieve multiplexing
or enhance signal stability. In terms of sensing, multiple antenna technology
can be used to perform beamforming to enhance sensing performance. With
the assistance of multiple antennas, in addition to estimating distance and
velocity, radar sensing can also detect angle parameters, thereby obtaining
three-dimensional spatial information. For the fusion of sensing and commu-
nication technologies, spatial resource allocation refers to the allocation of
antenna resources. The antennas are divided into sensing antennas and com-
munication antennas, and the quantity and distribution of antennas can be
determined according to the respective requirements of sensing and communi-
cation. Common indicators include angular resolution and beamforming gain.
In terms of technology, to avoid interference between sensing and communi-
cation, it is necessary to design separate antennas for beamforming, so that
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FIGURE 10.23
Illustration of spatial resource allocation.

the signals of the two can point in different directions. Alternatively, in signal
space, they can be projected onto each other’s null space to avoid interfer-
ence generation [222]. Of course, in practice, antenna resources can also be
left unallocated, and the functionality of sensing and communication can be
achieved by designing beam patterns to point in multiple directions, as shown
in Figure 10.23. However, this belongs to an example of integration at the
physical layer and is not a simple cooperation problem.

Coding resource allocation: In coding resource allocation, unlike the
natural resources of time, frequency, and space, coding resources increase the
additional degrees of freedom for signal transmission through the design of
artificial orthogonal codes. The orthogonal properties of coding are used to
ensure that sensing and communication signals do not interfere with each
other. However, the drawback is that additional computational complexity
or hardware architecture is required to implement coding, resulting in extra
costs. Therefore, coding is more commonly used in extreme scenarios where
the SNR is excessively high and the allocation of natural resources cannot
meet the performance requirements of sensing and communication. In such
cases, coding can be used to enhance performance. Adding a switch control
to adopt coding to solve the performance degradation caused by excessive
noise in low SNR scenarios. In terms of hardware design, the introduction of a
switch control in ref. [223] increases the cost of hardware, and the adoption of
coding also increases computational complexity. Therefore, there is relatively
less research related to coding resource allocation.

Energy resource allocation: In energy resource allocation, due to
the lack of orthogonality in energy, although it is possible to achieve non-
orthogonal multiple access (NOMA) multiplexing through the allocation of
energy levels, there are significant limitations in its practical application.
Complex scenarios result in strong fading, leading to poor performance of
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FIGURE 10.24
Illustration of multi-location radar sensing and single-location radar.

FIGURE 10.25
Illustration of game theory-based solution and joint design.

NOMA. Since this chapter focuses on the analysis of physical-layer collabora-
tion, NOMA technology is mostly used for physical-layer integration. There-
fore, energy allocation here refers to the allocation of resources among different
hardware and the handling of mutual interference between different hardware.
Under different Cooperative Radar Communication (CRC) systems, the po-
sitioning of radar sensing can be categorized as multi-location radar sensing
or single-location radar sensing. These two have distinct mathematical differ-
ences in the signal model, as their received steering vectors are not the same,
as shown in Figure 10.24.

In addition, due to different environments and the distance of the detected
objects, the system can be classified into complex surrounding environments
(such as urban or indoor) that require clutter consideration, models with sec-
ondary reflection interference when the target object is close to the communi-
cation user, or models with only line-of-sight interference when the distance
between the two is far apart. Regarding the solution for resource allocation,
it can be divided into game theory-based solutions for resource competition
and centralized joint design for optimization, as shown in Figure 10.25. In the
joint design approach, it is only necessary to define the mathematical model
based on the environment and use optimization algorithms to compute the
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solution. In the game theory approach, since the systems cannot communi-
cate with each other, each participant can only optimize their own utility to
achieve Nash equilibrium. In related research, energy allocation under orthog-
onal frequency division multiplexing (OFDM) waveform is determined based
on comparing the performance of sensing and the channel capacity of com-
munication [184]. Considering line-of-sight interference, clutter interference,
and secondary reflection path interference, energy allocation is determined
based on channel capacity and sensing signal-to-noise ratio [224–226]. Game
theory is employed to solve energy allocation problems in non-cooperative
systems [227, 228]. Energy allocation is designed based on energy utilization
efficiency and low interpretability [229].
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Machine Learning Techniques

11.1 Brief History of Deep Learning

The idea of deep learning (DL), especially neural networks, was first proposed
in 1943 by McCulloch and Pitts [230], trying to utilize mathematical mod-
els to mimic the nervous activity of human beings. In 1958, the first neural
network with automatic learning capability (i.e., perceptrons) was proposed
by Rosenblatt, adjusting trainable parameters via gradient descent algorithm
in the neural network to perform binary classification tasks [231]. This in-
spires the revolution in research of the first artificial intelligence wave for
years to come, till the first AI winter. In 1969, Marvin Minsky and Seymour
Papert proved in their book [232] that a single-layer perceptron model can
only solve linear classification problems and cannot solve simple XOR and
XNOR problems, triggering the first winter of neural network research. In
this period, research activities were still performed, developing the ideas of
some famous and fundamental neural network architectures, such as the con-
volutional neural network architecture (CNN) and the recurrent neural net-
work (RNN). Complex nonlinear problems were first addressed by Geoffrey
Hinton, Rumelhart, and Williams’s work [233] in 1986 and thus rebuilt the
confidence of the research community toward this direction. In this work, the
famous backpropagation algorithm (BP) is first utilized in the training pro-
cess of multi-layer perceptrons (MLPs), which constantly updates the network
parameters to minimize network loss based on the chain rule method. This
work triggers the second wave of artificial intelligence research to focus on the
development of shallow learning. In this period, the architectures of CNN and
RNN were completed and are still employed nowadays. LeCun proposed the
biologically inspired CNN model based on the BP algorithm in 1989, estab-
lishing the foundation of DL for modern computer vision. Moreover, Cybenko
proved that a single hidden layer perceptron containing a finite number of
neurons can approximate any continuous function [234] in 1989, greatly stim-
ulating the imagination of the power of artificial intelligence (AI). Specifically,
with the increasing number of hidden layers, the fitting capability of neural
networks is also increasing significantly. As a result, complex and nonlinear
problems can be addressed. However, with the compelling number of hidden
layers, the error propagation process triggered by the BP algorithm becomes
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malfunctioning and consequently leads to extremely slow convergence of the
training of neural networks. This so-called gradient vanishing problem was
pointed out by Hochreiter’s work in 1991 [235]. Constrained by the limited
computational capacity back in 1991, it was impossible to support the training
of deep neural networks efficiently. Moreover, other machine learning models
with statistical backgrounds, such as support vector machine (SVM) [236],
were also developed in the middle of the 1990s. From then on, the research of
neural networks suffered a second major roadblock for almost two decades.

Finally, in the last two decades, the previous challenges of the training of
neural networks have started to be solved along with the fast advances in terms
of computation hardware, big data, and theoretical backgrounds. Thanks to
those advances, the power of DL is revealed and becomes non-negligible by
providing state-of-the-art solutions to various information and communica-
tion technologies (ICT) domains. Specifically, In 2006, the gradient vanishing
problem was first overcome by Hinton’s work [237]. In this work, a layer-by-
layer training procedure (i.e., deep belief networks) is employed, training and
fixing a target layer to train each layer of a deep neural network sequentially
to avoid the gradient vanishing problem. In 2008, Andrew NG’s group at
Stanford started advocating for the use of GPUs for training DNNs to speed
up the training time by many folds [238]. Starting from here, training neural
networks on huge volumes of data becomes possible to pave the way for effi-
cient and practical DL. In 2009, Fei-Fei Li, a professor at Stanford, launched
ImageNet, which is a database of 14 million labeled images [239]. It would
serve as a benchmark for the DL researchers who would participate in Ima-
geNet competitions (ILSVRC) every year and greatly advocate the dominant
position of neural networks in the computer vision research domain. In 2011,
Bengio developed a novel but simple way to prevent the vanishing gradient
problem by adjusting the nonlinear function inside the neural network (i.e.,
activation function) [240]. This means that now, apart from heavy GPU uses
when employing deep belief networks to tackle gradient vanishing problems,
DL community has another tool to avoid issues of longer and impractical
training times of deep neural networks and facilitate the end-to-end train-
ing of neural networks instead of layer-by-layer training. In 2012, AlexNet, a
GPU-implemented CNN model designed by Alex Krizhevsky [241], won Im-
agenet’s image classification contest with an accuracy of 84%. It is a huge
jump over 75% accuracy that earlier models had achieved. This win triggers
a new DL boom globally. Being the earliest ancestor of generative AI, genera-
tive adversarial network, also known as GAN was created by Ian Goodfellow
in 2014 [68]. GANs open a whole new door to the applications of DL, such
as medical imaging and highly convincing image/video generation thanks to
their ability to synthesize real-like data. In 2016, DeepMind’s deep reinforce-
ment learning (RL) model beat a human champion in the complex game of
Go [242]. The game is much more complex than chess, so this feat captures
the imagination of everyone and take the promise of DL to a whole new level.
In 2019, Yoshua Bengio, Geoffrey Hinton, and Yann LeCun won the Turing
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Award 2018 for their immense contribution to advancements in the area of
DL and AI. This is a defining moment for those who had worked relentlessly
on neural networks when the entire machine learning community had moved
away from it in the 1970s. In 2022, OpenAI released ChatGPT, which is an AI
chatbot with human-like dialogue capability and showed the power of neural
networks in the natural language processing domain using both supervised
and RL techniques. Most recently, John Hopfield and Geoffrey Hinton won
the Nobel Prize in physics for their contributions to the development of ar-
tificial neural networks.1 Given its success in computer vision (CV), natural
language processing (NLP), and increasingly more emerging research areas,
the ability of DL to extract features automatically has motivated researchers
to employ DL technology on different research problems.

In light of this direction, DL technology has been introduced into sig-
nal processing and communication research areas, showing high performance
and low complexity when compared to conventional optimization-based algo-
rithms. In fact, in the recent specification Release 18 defined by 3rd Gener-
ation Partnership Project (3GPP), three critical use cases, including channel
state information (CSI) feedback, beam management, and positioning, are
selected to investigate the improvements brought by DL-aided designs. Be-
sides that, one can also notice that DL-based solutions have started to play
important roles in the automotive sensing research area due to its provided ro-
bustness against imperfections. In conclusion, we anticipate that increasingly
more communication and sensing system designs can be further enhanced with
the power of DL, being an important motivation for introducing this exciting
and novel research area to readers in this book. In the remaining sections
of this chapter, we aim to introduce the basics of current neural networks.
Then we will focus on the benefits and design concepts of introducing DL
into wireless communication, sensing, and eventually, integrated sensing and
communication research areas in the following chapters in this book.

11.2 Training Methods of Deep Learning Models

In the previous section, one can notice that the development of DL is inspired
by the biological activity of human beings, trying to mimic the amazing ca-
pability of human brains to process information mathematically. Specifically,
given input from the environment, human brains can process the input and
provide appropriate output to respond to the environment, being the main
target to be mimicked by DL models. For example, when a driver sees a stop
sign (i.e., input image) on the road, the driver will hit the brake (i.e., output)

1For a more detailed description of the history and development of deep learning, readers
can refer to the chronological review article [243].



266 Machine Learning Techniques

to slow down the vehicle gradually, thanks to the brain’s capability to process
the input and produce appropriate output in a very short time. Moreover,
even though there are some variations when seeing different stop signs in dif-
ferent conditions, such as the lightness or the stains on the signs, we are still
able to recognize those stop signs without any hesitation. Specifically, this is
the major advantage provided by DL-based solutions since it is almost impos-
sible to overcome this issue if using traditional rule-based solutions. Thus, in
the research of DL models, our main goal is to replace the above procedures
using mathematical models so that different applications can be executed in-
telligently and automatically without the assistance or supervision of human
beings. Although the final goal is to build general-purpose DL models (i.e.,
artificial general intelligence (AGI)) to fully duplicate human brains’ capabil-
ity, current AGI research is still in its infant stage. As a result, we will mainly
focus on single-propose DL models to introduce how to build a DL model to
perform a specific task after appropriate training in this section.

Given a predefined input x(i) as ith sample with the dimension of NI×1 in
the training set2, our goal is to build a mathematical function fDL to process
the input and generate an appropriate output ŷ(i), which is close to y(i) and
both as NO × 1 vectors. Hence, the inferring procedure can be expressed as:

ŷ(i) = fDL(x
(i);Θ), (11.1)

where Θ is the trainable weight of the DL model fDL. Using Eq. (11.1), vari-
ous tasks can be defined and learned through the appropriate training of DL
models. For example, in the computer vision domain, image classification tasks
can be performed by setting input x as an image and output y as the desired
image class; in the natural language processing domain, language translation
can also be executed by setting input x as a Chinese sentence and output y
as the corresponding English sentence. Moreover, in the wireless communi-
cation and sensing domain, beamforming vector design can also be aided by
DL models for instance, by setting input x as a channel state information and
output y as the desired beamforming weight to maximize the quality of service
from the user perspective. After defining the input/output relationship for a
desired task, the next step to train a DL model is to employ an optimization
framework to obtain the optimal trainable weight Θ∗ in an iterative manner
(i.e., offline training phase). After that, the optimal weight will be fixed and
the DL model will be ready to be used (i.e., online inferring phase) for gen-
erating output based on unseen new samples. Based on the availability of the
desired output y, different learning methods, including supervised learning,
unsupervised learning, reinforcement learning, and generative learning, can
be utilized to construct the optimization framework for training purposes. We
provide a brief introduction to each learning method in this section.

Supervised learning: Being the most naive training method, supervised
learning can be adopted when the corresponding output y to each input x

2Two-dimensional matrices or multidimensional tensors can be vectorized in advance to
follow the form in this section.
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is available in the training phase. In light of this direction, assuming that
there are Nsample samples in the training phase,3 the following optimization
framework can be employed to train a DL model in a supervised learning
manner:

Θ∗ = argmin
Θ

Nsample∑
i=1

Loss{ŷ(i) = fDL(x
(i);Θ),y(i)}, (11.2)

where Loss{·} is a pre-defined loss function used to measure the similarity
inversely between ŷ(i) and y(i) so that a similar pair of {ŷ(i),y(i)} will result
in lower value and vice versa. As a result, by minimizing Eq. (11.2), we are
actually searching for an optimal weight Θ∗, which can maximize the simi-
larity of the produced output ŷ and ground truth y. Based on different types
of applications, different loss functions can be employed or designed to bet-
ter evaluate the behavior of DL models and provide better supervision in the
training process. For example, mean square error (MSE) is a commonly used
loss function to supervise regression tasks of DL models, defined as:

MSE{ŷ(i) = fDL(x
(i);Θ),y(i)} = ||y(i) − ŷ(i)||2, (11.3)

where i is the index of samples in the training set i ∈ {1, · · · , Nsample}. On
the other hand, multi-class cross entropy loss is often employed to supervise
multi-class classification tasks of DL models, defined as:

CE{ŷ(i) = fDL(x
(i);Θ),y(i)} = −

NO∑
j=1

y
(i)
j log ŷ

(i)
j , (11.4)

where y
(i)
j represents the jth element of ith sample in the training set. In this

case, y(i) is defined as y(i) ∈ {1, 0}NO using 1 to represent the corresponding

input is belonging to a specific class and vice versa. When y
(i)
j = 1 exists, the

prediction y
(i)
j = 1 will result in the loss as 0. On the other hand, the prediction

y
(i)
j = 0 will lead to the loss as ∞. By doing so, the multi-class cross entropy

loss function can be used to supervise the training of the DL models to provide
a desired output when facing multi-class classification problems. Moreover,
the output generated in this way has the physical meaning of probability,
which further enables more downstream applications in communication or
sensing research areas, such as soft decision using log-likelihood ratio (LLR)
[245,246]. After finishing the loss function design, gradient-based optimization
algorithms can be used to solve Eq. (11.2) to obtain the optimal trainable
weight, that is,

Θ← Θ− ϵ ·
Nsample∑

i=1

∂Loss{ŷ(i) = fDL(x
(i);Θ),y(i)}

∂Θ
, (11.5)

3In a standard DL training procedure, all available data in the training phase should be
partitioned into three mutually exclusive sets: training set, validation set, and testing set.
For the details regarding this training setup, readers can refer to the book [244]. Here, we
assume Nsample as the training set size to conduct our discussion.
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FIGURE 11.1
Illustration of the supervised learning flow diagram.

where ϵ is the predefined learning rate. Considering the complex architecture of
the current DL models, a mature training algorithm, the backpropagation al-
gorithm, utilizes the concept of the chain rule to compute gradient information
of all trainable weights efficiently, working with gradient-based optimization
algorithms to finish the training procedure in an iterative manner. The whole
procedure is illustrated in Figure 11.1. In the figure, using image classification
as an example, a neural network is trained to perform decision-making to tell
which object is mainly presented in the input figure. Thus, the classification
prediction result is a vector describing the decision probability of each prede-
fined category. This prediction will then be compared with the corresponding
label to generate a loss value. Finally, the backpropagation method is utilized
to tell how each trainable weight should be adjusted to yield to improved loss
value by means of gradient descent optimizations to finish the training on a
single sample.

In literature, supervised learning has a lot of applications due to its easy
implementation. Moreover, it is often considered a useful benchmark to evalu-
ate the potential and practicality of adopting DL solutions to tackle a specific
problem. Specifically, as long as the ground truth can be provided, various
applications can be considered to build a forecasting model to perform regres-
sion or classification tasks. For example, a regression model can be developed
to forecast house prices given property information, such as location and his-
torical price. Also, a classification model can also be built to perform auto-
matic image classification given the original image. In the direction of wireless
communication and sensing, supervised learning also can be employed to aid
system designs for better performance or lower complexity. For instance, using
a well-known weighted minimum mean square error (WMMSE) beamforming
algorithm to generate beamforming weight corresponding to channel matrixes
in the training set, a DL model can be built as a beamformer to mimic the be-
havior of WMMSE beamforming algorithm in a low-complexity manner [247].
Moreover, given the log information of communication or radar systems, a
DL classification model can also be trained to perform anomaly detection by
extracting error patterns in log information automatically [248].
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Unsupervised learning: Although supervised learning can already be
employed to support several exciting applications in various research domains,
the availability of the required huge amount of labels limits the broader usage
of supervised learning. In fact, labeling is a time-consuming and expensive
procedure since high-quality data with precise labels takes effort to collect.
Moreover, human power is still required heavily in nowadays labelling pro-
cess. Alternatively, unsupervised learning is developed to train DL models
without the need for labels.4 As a result, instead of mimicking the behav-
ior of the model algorithm or human behaviors, unsupervised learning can
be understood as an automatic optimizer, minimizing the predefined loss
function by finding the optimal trainable weights automatically. However,
to avoid the labeling effort and to enjoy the benefit of unsupervised learn-
ing, the loss function design of unsupervised learning is not trivial. Specifi-
cally, unlike supervised learning can utilize the similarity between DL model
predictions and ground truth to train the DL models. Without labels, the
goal of unsupervised learning is to design an objective function to evaluate
a DL model’s output directly. Moreover, to allow the normal function of the
backpropagation algorithm, the design of the above objective function should
be differentiable with the perspective of trainable weights so that all train-
able weights can be adjusted based on gradient information to minimize the
objective function gradually, which is the major difficulty in designing such
functions.

Given the challenging nature of the unsupervised learning objective func-
tion designs, the volume of unsupervised learning research is much less than
supervised learning research. However, there are still some ingenious designs
to enable unsupervised learning to be employed to perform desired tasks and
to enjoy the provided benefits. For example, in the computer vision research
domain, super-resolution is a classic task, where DL models are expected to
generate high-resolution images based on given low-resolution images. While
supervised learning is straightforward to be adopted to do so by training a DL
model to learn the input/output mapping of low-resolution/high-resolution
pairs, ref. [251] develops an unsupervised learning framework to allow super-
resolution training utilizing unpaired low-resolution and high-resolution im-
ages. Moreover, in the wireless communication and sensing research domain,
utilizing the beamforming design problem as an example, ref. [252] designs an
unsupervised learning framework to allow direct beamforming designs with-
out labels generated by other reference algorithms, as shown in Figure 11.2.
As a result, the proposed DL model can learn to directly maximize sum-rate
(i.e., the customized loss function in this case) by generating a beamforming

4There are also some variants of unsupervised learning, such as semi-supervised learning
and self-supervised learning. Semi-supervised learning stands between supervised learning
and unsupervised learning, where only a subset of labels can be utilized in the training
process. Self-supervised learning designs tasks that can process unlabeled data to obtain
useful representations that can help with downstream learning tasks. For a more detailed
description of those novel learning categories, readers can refer to refs. [249,250].
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FIGURE 11.2
Illustration of the unsupervised learning flow diagram.

matrix for a given channel matrix. In this case, the derivative of the sum-rate
with the perspective of trainable weights ensures the normal function of the
backpropagation algorithm, so that the whole learning framework, similar to
supervised learning, can still be performed in the training process. Note that
while the performance of supervised learning-based beamforming algorithms
is naturally bounded by the reference algorithm, unsupervised learning-based
beamforming algorithms can often provide superior performance by directly
optimizing the sum-rate instead of mimicking other reference algorithms.

Reinforcement learning: Following the logic of unsupervised learning,
in the case that we aim to skip the labeling effort, we will be motivated to
design an objective function satisfying the differentiable property to adopt the
unsupervised learning framework. However, designing such objective functions
can be even very challenging. For example, in Go games, given the current
status of the Go board as an image input, a classification problem can be
formed to output the next action, but how to evaluate the goodness of each
action using mathematical methods is still unknown. Due to this difficulty, it is
impossible to train mature DL models to play Go games intelligently instead
of just memorizing Go records from master players using either supervised
learning or unsupervised learning. Moreover, in the Go game, evaluating the
goodness of every single action is not making sense since some strategic moves
might take a series of actions to see the consequences instead of making efforts
in every single action, also being the pain point to utilize supervised learning
or unsupervised learning since model input and output should be defined and
fixed in advance and thus cannot handle the design of the aforementioned
strategic moves with arbitrary length. To solve the above two issues, RL is
developed to train DL models to perform complex and strategic tasks, such
as Go games, human-like chatbots, and video games.

Similar to the idea of other DL models, RL also tries to find a function to
act as the brain of the RL algorithms so that the model can take appropriate
action (i.e., output) to respond to environment input (i.e., input). We use a
fundamental but classic reinforcement algorithm, Q-learning, as an example



Training Methods of Deep Learning Models 271

to continue our discussion here. To introduce RL mathematically, we assume
s ∈ S is the environment input vector and a ∈ A is an action vector containing
all possible Naction actions as a Naction × 1 vector where S and A represents
the state space (i.e., the set of all possible state) and action space (i.e., the set
of all possible action). Assuming that we are interested in utilizing Q-learning
to solve a 2D maze game, then s will be the current position of the character,
which will be fed into the RL algorithm as an input, and a will be a 4 × 1
action vector representing the probability to guide the character in the maze
games to move right, left, forward, or backward. Then our goal is to train an
action value function, which is defined as:

Q(s,a) : S ×A → R, (11.6)

where R is the reward space. In this example, the reward R ∈ R can be the
product of −1 and the number of expected steps to finish the maze games.
The physical meaning of the above action value function is to evaluate the
quality (i.e., reward R) of each state–action combination by returning the
corresponding reward. By doing so, if a well-trained action value function is
available in the online inferring phase, for any given state s, we can always se-
lect the optimal action a to maximize the reward function and thus minimize
the expected steps to finish the maze games. One can notice that the reward
function is similar to the objective function of supervised learning and the
unsupervised learning framework. However, to better evaluate the goodness
of a series of actions for the learning of strategic moves, the long-term effects
should be considered in the design of the reward function, being the main
difference between RL and previous learning frameworks. To explain, for ex-
ample, suppose that in the 2D maze game, one can design a reward function so
that if we successfully arrive at the exit of the maze, we will gain 1 point as an
immediate reward, but we lose 1 point to take each step. In this process, not
only the final step but also a series of steps before that should be considered as
desired behavior and be rewarded. By doing so, the RL algorithm can not also
learn to finish the maze games but also be motivated to find the most efficient
way to finish the maze games. To advocate this important long-term effect,
the updating rule of action value function Q(s,a) in Q-learning is defined as:

Q(s,a)← Q(s,a) + ϵ[r + γmax
a′

Q(s
′
,a

′
)−Q(s,a)], (11.7)

where γ < 1 is a pre-defined discount factor, s
′
is the next state after we take

action a, and a
′
is the next action we take when facing next state s

′
using

current action value function. In Eq. (11.7), ϵ is the learning rate and the
whole term [r + γmaxa′ Q(s

′
,a

′
) −Q(s,a)] is the error term of the previous

prediction, which will be utilized to update the current action value function.
In this error term construction, besides the immediate reward r, the future
expected reward γmaxa′ Q(s

′
,a

′
) is also considered to realize the evaluation

of a series of moves. To explain, after we take action a as the response of
current state s, we will enter the next frame and face s

′
as the new state.
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FIGURE 11.3
Illustration of the reinforcement learning flow diagram.

The term maxa′ Q(s
′
,a

′
) represents the best outcome we can obtain after

entering s
′
by choosing optimal action a

′
according to the action value function

recommendation. One can also notice that the structure of this updating rule
is quite similar to the gradient-based updating rule in Eq. (11.5), the only
difference is that Eq. (11.5) utilizes the similarity between prediction and
ground truth to obtain error term and Eq. (11.7) models the error term as
the difference between the maximum future reward and current predicted
reward. The whole training procedure and how the agent interacts with the
underlying environment are also illustrated in Figure 11.3. In the figure, in
the first timeslot, a state s is given by the environment so that the agent can
output the decision a based on the given state. After the action a is executed
and fed into the environment, the immediate reward r is generated so that
the actual reward R can also be obtained for RL training purposes. Then the
next scene is provided to the agent and the above procedure starts over again
until the termination of the game.

As shown in Figure 11.4, if we consider the naive reward function design
(i.e., only arriving at the final destination yields 1 point), we assume that
we are in a position so that the final two steps to solve the 2D maze game
from the current position are to move forward and then turn left. In this case,
although walking forward to move a step closer to the destination will not
get positive reward immediately, the term maxa′ Q(s

′
,a

′
) = 1 still indicates

this decision is the most efficient decision for now since the maze game can
be solved in the next step. In other words, in the considered maze game, as
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FIGURE 11.4
Illustration of the reward mechanism in reinforcement learning training pro-
cedure.

shown in Figure 11.4, where we present a numerical example, although only
arriving at the final destination will result in a positive reward, spending more
steps turning around is not encouraged owing to the design of the discount
factor. Using this way, the agent will be guided to find the most efficient
way to the final destination to maximize the total expected reward instead of
only considering the immediate reward. To further accelerate the convergence,
one can further consider adding the penalty term when taking each step as
aforementioned, but solely considering the long-term reward can also lead to
convergence thanks to the discount factor design. In the above discussion, one
can notice that the only way we can update the reward when the agent chooses
a specific action when facing a specific scene is through the multiple times of
trial and error procedures. This is actually the main idea of the RL algorithm:
the exploration and exploitation mechanism. In fact, in the training procedure
of current RL algorithms, the so-called adaptive ϵ−greedy algorithm is also
employed to advocate the exploration behavior in the early training stage and
emphasize the exploitation behavior in the mature training stage. To explain
with the aforementioned Q-learning algorithm, at the early training stage, the
Q-table records almost random values since almost no iterations are conducted
to update the action value table. As shown in Eq. (11.8), instead of following
the recommendation of the Q-table, there is ϵ probability that the agent will
perform a random action, exploring different strategies in the early training
stage. As the training epoch goes on, ϵ will be set to decrease accordingly. As
a result, in the later training stage, the agent will have a higher probability
of following the Q-table recommendation since the Q-table has been updated
and is close to its convergence to offer mature recommendations in this stage.
Following this logic, RL can also be understood as an efficient search method to
test different strategies and record the optimal one with the highest expected
reward without labeling.
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a =

{
argmax

a
Q(s,a), with probability ε

random action, with probability 1− ε.
(11.8)

Depending on the problem setting, such as discrete/continuous state/action
space, a number of different RL algorithms are developed to serve different
scenarios. Moreover, although the fundamental idea of the recently popular
large language model (LLM) is still RL, several advanced designs are further
employed to supervise the RL agent to tackle complex natural language pro-
cessing tasks. For a more detailed survey of current mainstream RL method-
ologies, interested readers can refer to refs. [253–258] for more details. Al-
though different algorithms introduce special features to further enhance the
learning capability of RL algorithms in different scenarios, the basic ideas,
such as the exploration and exploitation concept and updating rule, are still
utilized as the core of different RL algorithms.

Generative adversarial learning: While most regression or classifica-
tion tasks can be tackled by the above training methods, a special type of task,
structure learning, cannot be handled by the previously introduced learning
framework. Hence, generative adversarial learning is developed to serve those
special needs. Specifically, in terms of structure learning, we wish DL models
to generate various outputs following a special structure instead of having
a standard answer. For example, given a prompt sentence, we aim to ask a
DL model to generate a highly convincing photo containing the theme in the
prompt sentence instead of other themes. Another example is the algorithmic
composition, which is anticipated to generate a specific type of music, such
as Jazz or Classical music, according to the given input. In the above two ex-
amples, it is hard to either prepare the “ground truth” answer to each input
sample or design an appropriate function to evaluate the model output, while
human beings can easily tell the quality of the generated photos or music. In
fact, given a photo or music, a classification model trained by the aforemen-
tioned supervised learning can be used to tell if the theme (e.g., cats) exists in
the photo or what type of music (e.g., Jazz) it is. The above phenomenon re-
veals DL model actually can extract and detect subtle differences, that cannot
be formulated mathematically, and utilize those features to finish the classifi-
cation task. In light of this direction, the development of generative learning
comes from an interesting but naive idea: Can we employ another neural net-
work (i.e., discriminator) to supervise the generation procedure of the original
network (i.e., generator)? By doing so, even without an elegant way to di-
rectly evaluate the quality of the generated product through loss functions
(i.e., supervised learning or unsupervised learning), indirect supervision can
still be utilized via the feedback of the discriminator since the discriminator
has the ability to perform classification and provide the probability to the
desire question. The flow diagram of generative adversarial learning using the
human face image generation problem as an example is illustrated in Figure
11.5. To give generative adversarial learning the ability to address the desired
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FIGURE 11.5
Illustration of the generative adversarial learning flow diagram.

structure learning problem, in the figure, two neural networks, a generator and
a discriminator, are built in the proposed framework. By feeding a random
sequence into the generator, the generator will work as an image generator in
this example, producing various human face images. Furthermore, to empower
the generator to produce highly convincing human face images, a discrimina-
tor is trained as a binary classifier to distinguish between generated human
face images and real human face images. By doing so, the discriminator actu-
ally offers a special loss metric, the generative adversarial loss, to supervise the
generator by comparing and evaluating the pixel distribution (i.e., pattern)
in the generated and natural human face images (e.g., a common human face
should contain eyes, nose, and mouth in the “right” position).

Mathematically speaking, the loss function of the whole generative adver-
sarial learning framework can be expressed as:

min
G

max
D

Ladv(G,D), (11.9)

where G and D represent the generator neural network and the discrimina-
tor neural network, respectively. The generative adversarial loss Ladv can be
further expressed as:

Ex∈Sreal
[D(x)]− Ex̃∈Sfake

[D(x̃)], (11.10)

where x is the sample from a real human face dataset Sreal and x̃ is the gen-
erated human face from the fake human face dataset Sfake. It is noteworthy
that the fake human face dataset Sfake can be generated by simply inputting
random noise into the generator and collecting the generated products as the
fake human face dataset. In Eqs. (11.9) and (11.10), from the generator’s per-
spective, the only way that can achieve its goal of minimizing Eq. (11.9) is
to generate highly convincing human face images to fool the discriminator by
using generated human face images to obtain higher scores so that the second
term in Eq. (11.10) can be maximized. On the other hand, the discrimina-
tor attempts to discriminate between real human face images and generated
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human face images so that a comparatively high score will be given when in-
putting real images while a low score will be given when inputting generated
images for maximizing Eq. (11.9). Here, one can notice that the goal of the
generator is adversarial against the goal of the discriminator in Eq. (11.9),
being the main reason to be named as generative adversarial learning. Follow-
ing this logic, the adversarial game will be played for up to several thousand
iterations until convergence. After the iterations until convergence, the dis-
tinguishing result of the discriminator is close to a random guess since the
generator can already produce various human face images with ample details,
which is very close to the real human face image dataset. It is noteworthy that
only a single generator will be employed to finish the human face generation
problem in the testing phase. In other words, the role of the discriminator is
just to provide a special loss function based on the distributional similarity of
generated human face images and the real face images in the training phase
to supervise the behavior of the generator.

Similar to the RL case, several different generative adversarial learning
algorithms have been developed to serve different scenarios and generate in-
creasingly convincing results. For example, several good papers work on the
convergence analysis of the above training procedure and provide improved
mathematical functions as the loss functions of the generator and discrim-
inator to accelerate the convergence. Moreover, one can notice that in the
aforementioned generative adversarial training, the products of the trained
generator will still show huge variations. For example, it is hard to ask the
trained generator to produce a woman’s face or a man’s face since all inputs
are random noise vectors. In light of this direction, conditional generative ad-
versarial networks are also developed, so that one can specify constraints to
ask the trained generator to produce desired products. This is especially useful
when we try to employ generative adversarial networks to address engineering
problems since we often require a design under constraints instead of random
designs. For a more detailed survey of current mainstream generative adver-
sarial learning methodologies, interested readers can refer to refs. [259–261]
for more details. In those variations of the original version of generative ad-
versarial learning algorithms, the setting of multiple neural networks and the
concept of the adversarial game can still be found as the main concept.

11.3 Network Structures of Deep Learning Models

Similar to the case of different training methods of neural networks, neural
network architectures are also further specialized and developed to better
adopt data with different features. In this section, we classify mainstream
neural networks based on their structure, then provide a brief introduction
and certain examples of each category for our continued discussions
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FIGURE 11.6
A mathematical model of an elemental component of fully connected neural
network (FCNN), where N input features x0, x1, . . . , xN with different weights
and a bias term b are summed together to give a, which is then fed into a
sigmoid activation function to generate an output y.

Fully connected neural network: Fully connected neural network
(FCNN) is the most basic neural network of the DL model. Figure 11.6 shows
the elementary component of a FCNN, which is also known as the perceptron.
From the previous section, we know that the training phase of the DL model
can be comprehended as an optimization process. That is, by designing an in-
terested key performance indicator (i.e., loss function), the model will adjust
the trainable weights to achieve a better performance using the backprop-
agation algorithm iteratively. As shown in the figure, all the input features
are fed into a model simultaneously and the summation of weighted inputs
and bias will be sent into a nonlinear function to generate the output of this
neuron. The aforementioned procedure actually mimics the activation process
in the neural activity of human beings. Imaging a neuron is responsible for
detecting the pains of human body, a larger weight will be given to the sensory
receptor, which can detect extremely high temperatures so that scald can be
detected in a timely manner. As a result, once extremely high temperature
appears, we are more sensitive to that and can react accordingly in a short
period of time. Similarly, the aforementioned weighting sum architecture can
adjust those weights and biases to let the FCNN have a more severe reaction
when the interested features are detected. Mathematically speaking, the above
operations can be expressed as:

y = f(
N∑
i=1

xiwi + b), (11.11)

where xi is the input element, wi is the corresponding weight, and b is the
bias term. If we adopt this one-layer FCNN as the neural network architec-
ture, the aforementioned trainable weights actually refer to those weights and
bias corresponding to each input (i.e., Θ ≜ {wi, b} for i = {1, . . . , N}). With
the above different training methods, our goal is to systematize this adjust-
ing procedure to automatically search for optimal results based on any given
loss function. In other words, the most effective features can be extracted
automatically instead of handcrafted features.
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FIGURE 11.7
A deep FCNN includes input, hidden, and output layers. The multiple hidden
layers are stacked together to capture high-level features.

According to ref. [262], any relationship between input features and output
results can be approximated by a one-layer neural network with a sufficient
number of neurons. However, it is well-conformed that a deeper model is more
efficient than a one-layer neural network in terms of the required complexity
to achieve a certain performance requirement. The reason is that a deeper
neural network has a stronger ability to capture high-level features to further
improve desired tasks. To explain, each layer of the neural network with the
summation and nonlinear operation can be understood as a transformation
function. If the number of layers increases, a more complex transformation can
be made through the sequential combination of a lot of layers. For example,
through those transformations, nonlinear separable data can be transferred
into linear separable data in the higher-dimensional space so that just sim-
ple operations are needed to separate those data in this higher-dimensional
space. Following this logic, the aforementioned elementary component can be
stacked to form a deep FCNN, as shown in Figure 11.7, for enhanced capabil-
ity through a number of nonlinear transformations. Actually, the capability
of deep FCNNs to design weighting parameters automatically has encouraged
researchers to apply this model in several signal processing works, especially
for heterogeneous data fusion problems.

Convolutional neural network: Convolutional neural network (CNN)
is a special case of FCNN to enhance performance on image-based tasks (i.e.,
image classification tasks) by considering image portieres in the architecture
designs. To elaborate, FCNN can only support a one-dimension (1D) input.
Therefore, FCNN needs to vectorize a 2D image to satisfy the input limita-
tion. Yet, images have a strong 2D local structure and a lot of features only
persist in 2D representations (e.g., we can easily recognize human faces in 2D
representations, but it is hard to tell after 1D vectorization since the features
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we utilize to recognize human faces are destroyed.). Consequently, the 2D local
structure is destroyed after performing 1D vectorization, bounding the per-
formance of FCNN in image-based tasks. On the other hand, CNN contains
two important properties that deal with the above drawbacks. First, CNN
can support 2D structure input to preserve those image features. Second, in
most image-based tasks (e.g., image classification and super-resolution image-
based tasks.), we are caring about if interested features appear in the image
or not, regardless of the actual location of those features in the image. Thus,
after designing a set of weights to detect a specific feature, CNN also uses the
concept of convolution to go through the whole image to sense the desired
feature efficiently, irrespective of where the features appear in an image. On
the other hand, FCNN can only utilize redundant parameters (i.e., almost the
same weights) to sense the same feature in different locations of the image due
to the lacking of convolutional operations. Furthermore, the property of the
actual location of features in the image in image-based tasks can also be used
to further promote CNN’s efficiency. Specifically, the convolution operation
is presented on the automatically learned feature filters and input features to
compute the values of correlation and record them on the output feature maps.
However, in a CNN layer, several tens or even hundreds of filters have to be
employed to detect certain features, resulting in an increasing amount of out-
put feature maps and consequently a computational overhead when tacking
those feature maps with larger sizes in the next layer. To counter this chal-
lenge, most of the CNNs position a pooling layer after a convolution layer.
That is, a down-sampling process is operated in the pooling layer, resulting
in a smaller size of input features for the subsequent convolution layer. In this
process, although the location information will be discarded, the existence of
each features can still be preserved and passed to the subsequent convolution
layer, which can already satisfy most of image-based tasks. Thus, in location-
sensitive image-based tasks (e.g., object localization), the pooling layer will
not be employed to maintain the precise location information in those tasks.
In summary, a typical working flow of the CNN is shown in Figure 11.8. In
fact, CNN is usually utilized as a feature extractor and concatenated with a
FCNN as the final layer to enhance performance of desired tasks based on the
extracted features. Deep CNN is also employed in many engineering applica-
tions, such as certain communication works [263–265], by treating the channel
or other resources as an image and providing promising performance.

Recurrent neural network: In the aforementioned FCNN, all input fea-
tures are fed into a model simultaneously. Thus, when it comes to time-series
data, such as stock prices and Electrocardiography data, the information as-
sociated with the timeline cannot be emphasized and extracted easily when
using FCNN to tackle such type of data. Conversely, as shown in Figure 11.9,
recurrent NN (RNN) permits its input to enter in different time slots. Conse-
quently, RNN can grasp features of data according to context. Specifically, a
special design of RNN is that a state mechanism is created to pass messages
along with the timeline; further, the output in every time slot is decided by
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FIGURE 11.8
A convolutional neural network (CNN) architecture with a convolution and
pooling layer before flattening. By inputting a partial image at one time, the
convolution layer can learn and determine the correlation between the input
and the feature (e.g., an eye of a cat) filters to detect the existence of features.
The pooling layer can then down-sample the output from the convolution
layer.

the current state (i.e., information extracted from the previous input features)
and the new input feature. By doing so, RNN can extract important messages
automatically and store them in each state for the subsequent decision-making
process to better understand the events that happened in different time slots.
Although providing superior capability when tackling time-series data, train-
ing a deep RNN will suffer from several numerical problems (i.e., gradient
vanish and exploding problems). To overcome this drawback, several mod-
ified models, such as long short-term memory (LSTM) and gated recurrent
unit (GRU) [266,267], were proposed to mitigate the difficulty of training deep
RNN models. Owing to its outstanding performance, the LSTM is widely used
in areas such as communication systems [268–270], providing a more advanced
structure than RNN.

Graph neural network: Finally, the idea of graph NN (GNN) is quite
similar to that of CNN. In graph theory, a graph is used to describe a situation
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FIGURE 11.9
A recurrent neural network (RNN) architecture is designed by inputting fea-
tures in different time slots (xt−1, xt, xt+1 in the figure represent the inputs
in different timeslots). The current outputs in each time slot are dependent on
the current inputs and stored features h, which are detected by RNN based on
the former inputs automatically, to enhance prediction. Moreover, the RNN
can be stacked (hidden layer l in the figure stands for l-th hidden layer of the
RNN) as a deep NN to further improve the prediction result.

of several nodes and the connections between those nodes (edges). An image
can be treated as a special case of the graph with regular and well-organized
connections (i.e., edges) in Euclidean space, where pixels in an image are
regarded as the nodes of the graph. The aforementioned CNN is designed
to extract the spatial features of a graph only in Euclidean space and cannot
directly apply to general graph cases without performance degeneration. How-
ever, increasingly more data in real-time applications (e.g., traffic networks,
social networks) can also be presented precisely as a graph in non-Euclidean
space. Thus, to promote the use of DL in those applications, GNN was devel-
oped to extract spatial features of a graph with arbitrary connection in a non-
Euclidean space. The comparison of GNN and CNN is shown in Figure 11.10.
By mapping to the corresponding neural network structure in a conventional
DL model, the GNN can be divided into a recurrent GNN, a convolutional
GNN, graph autoencoders, and spatial-temporal GNNs to satisfy different re-
quirements by inheriting the advantages of different underlying architecture.
In the wireless communication research areas, the radio link through wireless
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FIGURE 11.10
Comparison of CNN and graph neural network (GNN). CNN is applied to a
graph in Euclidean space while GNN is applied to a graph in a non-Euclidean
space. The non-Euclidean space indicates a more arbitrary space than the
Euclidean space owing to its arbitrary connections between nodes.

connectivity can also be treated as a graph in non-Euclidean space since the
distance and link strength varies a lot in different scenarios. Thus, there are
also some great works utilizing GNN to better tackle wireless communication
engineering problems [271–273]. In the above all examples, one can conclude
that different training methods and neural network structures should be se-
lected carefully to better fit the considered problem, thus leading to improved
system performance or efficiency compared to traditional optimization-based
designs.

11.4 When to Use Deep Learning Models

After discussing the common training methods and the classic neural net-
work architecture of current mainstream DL models, we aim to discuss the
motivation to introduce DL solutions to any interested problem, especially in
wireless communication and sensing areas, to conclude this section. From the
previous discussions, one can notice that there are two features of the current
DL models. First, when applying DL-based algorithms, a clear and realistic
system model is often not required. Given ample training data or a well-built
environment, learning-based solutions can be utilized to automatically ex-
tract the input/output relationship of the interested problem and adjust the
trainable weights inside the neural network for accurate predictions. Second,
compared to optimization-based solutions, the computational complexity of
neural networks in the online testing phase is very simple since only stan-
dard matrix operations are involved. Although the computational complex-
ity of neural networks in the offline training phase can be really high, those
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procedures can often be performed in powerful servers or data centers in ad-
vance. In other words, compared to optimization-based solutions, DL-based
solutions can offload the computation overheads from the online testing phase
to the offline training phase, facilitating the development of real-time opera-
tions in real communication systems. Following this logic, one can expect to
benefit from employing DL-based algorithms when the following deficits exist.

Model deficit: Conventional optimization-based algorithms are devel-
oped according to a predefined and accurate mathematical model. If the math-
ematical model is imprecise or if it cannot even be formulated, optimization-
based algorithms cannot be designed appropriately, resulting in performance
loss or functional disability. Conversely, instead of using a mathematical
model, by feeding abundant data, DL-based algorithms can learn input output
relationship without any prior knowledge. Therefore, DL-based algorithms are
preferable in the model deficit condition. An example of a model deficit con-
dition in the communication research area is a DL-based decoding algorithm
for molecule communication [274–276]. Specifically, unlike the electromagnetic
wave channels, molecule communication channel has no authoritative math-
ematical expression to characterize the transmission process. Consequently,
traditional optimization-based decoding algorithms cannot be employed in
this scenario without performance degeneration. Conversely, DL-based algo-
rithms can infer the input-output relationship in the molecule transmission
process automatically, resulting in its application in molecule communication
with acceptable performance.

Algorithm deficit: If a precise mathematical model is available,
optimization-based algorithms can be developed. However, the usage of
optimization-based algorithms does not always guarantee their efficiency.
Consequently, certain problems are still solved by inefficient methods (e.g.,
brute force algorithms and exhaustive search) or iterative solutions. As a
non-iterative and low complexity algorithm, DL-based algorithms are con-
sidered an efficient alternative in an algorithm deficit condition. A case of
algorithm deficit in the communication research area is the CSI feedback prob-
lem [277–280]. Instead of compromising the overhead incurred while transmit-
ting a full version CSI, a compression mechanism can be designed to generate
a compressed version of the CSI. The mechanism is aimed at maintaining
information invariance after the compression. Conventional compressed sens-
ing (CS) methodology can be exploited as a solution; however, it suffers from
high complexity owing to the iterative processes. Conversely, the DL-based
algorithm offers an alternative without iterations. Moreover, because the DL-
based algorithm can properly utilize spatial correlations while CS algorithms
cannot, the DL-based algorithms provide a better performance on the CSI
feedback problem.
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DL-Based Signal Processing in
Communication Systems

12.1 DL-Based Channel Estimation

Being a fundamental signal processing functionality, researchers also investi-
gate how to utilize the power of deep learning (DL)-based algorithms to assist
channel estimation procedures. Specifically, if we treat the single-input single-
output-orthogonal frequency division multiplexing (SISO-OFDM) channel as
an image with two dimensions (i.e., time and frequency), it starts to be pos-
sible to employ mature research outcomes from the computer vision (CV)
domain into the wireless communication domain by treating the channel ma-
trix as a special image. Specifically, in the typical channel estimation proce-
dure of SISO-OFDM systems, some time-frequency resources will be placed
with pilots (i.e., known signals) so that the experienced channel can be eas-
ily estimated. Then, interpolation methods can be further applied to obtain
channel estimates in the time-frequency resources with data-symbols (i.e., un-
known signals) for subsequent detection and decoding processes. Mathemat-
ically speaking, the input-output relationship in the k-th timeslot and i-th
subcarrier of a SISO-OFDM system can be expressed as:

yi,k = hi,kxi,k + zi,k, (12.1)

where yi,k, hi,k, xi,k, and zi,k represent the received signal, channel, transmit-
ted OFDM symbol, and white Gaussian noise, respectively. To estimate the
experienced channel in the pilot positions with pilot length NP, a commonly
used way is to consider the least square (LS) channel estimates as a diagonal
matrix HLS

p ∈ CNP×NP and solving HLS
p through the optimization below:

ĤLS
p = argmin

Hp

||yp −Hpxp||22, (12.2)

where xp ∈ CNP×1 and yp ∈ CNP×1 is the known pilot values and correspond-
ing estimates.

The optimal solution of Eq. (12.2) can be obtained as ĥLS
p = diag(ĤLS

p ) =
yp ⊘ xp. Furthermore, the minimum mean square error (MMSE) estimator
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FIGURE 12.1
The proposed pipeline for DL-based channel estimation (copyright from ref.
[281]).

can be used to extend the channel estimates to non-pilot positions via the
filtering matrix designs as below:

ĥMMSE = AMMSEĥ
LS
p , (12.3)

where ĥMMSE ∈ CNL×1 is the channel estimates with total length NL and
AMMSE ∈ CNL×NP is the filtering matrix. The optimal filtering matrix designs
can be obtained by minimizing the MSE of channel estimates to obtain the
designed filtering matrix as:

AMMSE = Rhhp(Rhphp + σ2
n(xpx

H
p )−1)−1, (12.4)

where the matrix Rhhp = E[hhH
p ] denotes the channel correlation matrix

between the desired sub-frame and pilot symbols and the matrix Rhphp
=

E[hph
H
p ] is the channel correlation matrix of the pilot symbols. Thus, it is clear

that error-free correlation matrices should be obtained as prior knowledge to
perform channel estimation successfully, or an error propagation effect will
appear and affect the channel estimation performance. However, obtaining
high-precision correlation matrices is not trivial and often increases system
overheads. To solve this issue, ref. [281] develops a learning-based solution
to extract that information in a data-driven manner, thus avoiding system
overheads and providing high-quality channel estimates simultaneously.

In ref. [281], a two-step channel estimation method is proposed, utiliz-
ing the power of recent learning-based achievements to perform intelligent
interpolation for the above purposes. Specifically, the proposed solution con-
tains a super-resolution module and an image restoration module to do so, as
shown in Figure 12.1. Given the LS channel estimates ĥLS

p as the model input,
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the super-resolution module aims to perform interpolation by extending LS
channel estimates from pilot position to non-pilot position as the function-
ality of the MMSE estimator but without the correlation matrices informa-
tion. This procedure is very similar to the typical super-resolution task in the
CV research domain. That is, given the abundant pairs of low-resolution and
high-resolution images, the employed neural network can learn the underlying
transformation and can be used to predict the corresponding high-resolution
image based on an unseen low-resolution image in the testing phase. Simi-
larly, through observing a lot of training pairs, the super-resolution module
can also learn possible correlation matrices in a data-driven manner to per-
form the desired interpolation task. Furthermore, given the raw interpolation
result, the concatenated image restoration module will further polish the raw
interpolation result by reducing the reconstruction noise to generate the final
channel estimates. Mathematically speaking, the whole procedure to generate
final channel estimates can be presented as:

Ĥ = f(Θ; ĥLS
p ) = fR(fS(ΘS; ĥ

LS
p );ΘR), (12.5)

where f presents the whole neural network operations, including super-
resolution module fR and image restoration module fS with all trainable pa-
rameters Θ consisting of the trainable parameters from the super-resolution
module ΘS and the trainable parameters from the image restoration module
ΘR. Furthermore, to train all trainable parameters in Eq. (12.5), Mean square
error (MSE) is selected as the cost function to evaluate the similarity between
channel estimates and ground truth, that is,

C =
1

||T ||
∑
hp∈T

||f(Θ; ĥLS
p )−H||22, (12.6)

where T represents the total number of training samples. The results show
that the performance of the proposed method is highly competitive with the
MMSE algorithm with full correlation matrices information.

Similar to the idea of ref. [281], ref. [282] extends the prior work [281] to
MIMO-OFDM scenario and further enables channel prediction in the tempo-
ral domain. Specifically, the channel matrix of the interested MIMO-OFDM
system can be expressed as a 4D tensor H ∈ CNt×Nr×T×N , where Nt is the
number of transmitter antennas, Nr is the number of receiver antennas, N is
the number of subcarriers and T is the number of OFDM symbols. In ref. [282],
the LS channel estimation method will be performed first to obtain the chan-
nel estimates in the pilot position. As illustrated in Figure 12.2, to obtain
non-pilot position channel estimates, the MIMO-OFDM channel matrix of t-
th OFDM symbol Ht ∈ CNt×Nr×N (note that non-pilot positions remain as
zeros for this input) will be fed into two sequential convolutional neural net-
works (CNNs) for frequency-domain interpolation to fill the zero parts with
the inferred channel estimates. Then, to perform time-domain channel predic-
tion, two parallel long-short-term memory (LSTM) neural networks (i.e., bi-
directional LSTM (BiLSTM) architecture) are employed to effectively predict
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FIGURE 12.2
(a) Framework of proposed DL-based channel estimation algorithm. (b) The
structure of proposed learning network. Since the input of the learning network
is a 4D tensor, we use time distributed 2D CNN, which is an independent con-
volution for each time step signal. Similarly, the LSTM network is a recurrent
convolutional neural network; both its input transformations and recurrent
transformations are 2D convolutional (copyright from ref. [282]).

(t+ 1)-th OFDM symbol based on previous channel estimates. In particular,
one LSTM network is designed to perform forward prediction while another
LSTM network is responsible for performing backward prediction. This design
aims to tackle possible error propagation issue for normal LSTM, especially for
scenarios with long previous channel estimates from multiple-timeslots OFDM
symbols. Finally, another CNN neural network will be utilized to fuse the pre-
diction from the forward LSTM and backward LSTM to generate the final
channel estimates of t + 1-th OFDM symbol Ht+1 ∈ CNt×Nr×N . Simulation
results confirm that the proposed method is suitable for channel estimation of
fast-moving targets by delivering superior performance compared to conven-
tional LS and LMMSE channel estimation algorithms. Also concentrating on
utilizing temporal correlation to aid the channel estimation process, ref. [283]
further provides a systematic channel estimation method with reduced pilot
overheads. Specifically, D successive coherence intervals of channels will be
grouped as a channel estimation unit (CEU), where only the first coherence
interval will utilize full pilots and the rest coherence intervals will only employ
partial pilots to perform channel estimation. To recover the reduced prior in-
formation from the partial pilots utilization, all previous pilots in the CEU
will also be provided to the channel estimation neural network to fuse the
information from current and previous coherence intervals. With this design,
the temporal correlation can be extracted by the proposed neural networks
to compensate for the information loss from the reduced pilots to benefit
the channel estimation process. Finally, there are also several works utiliz-
ing generative adversarial networks (GANs) to perform channel estimation
for different wireless communication scenarios [284–286]. Different from the
above works, which utilize conventional cost function (i.e., Mean square error
or Mean absolute error) to evaluate the similarity between channel estimates
and ground truth, the basic idea of introducing GANs into the channel esti-
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FIGURE 12.3
The architecture of the GAN (copyright from ref. [287]).

mation pictures is to employ discriminator to provide a special cost function
to evaluate the similarity between channel estimates distribution and ground
truth distribution, as shown in Figure 12.3. By doing so, the generated channel
estimates can be even more convincing thanks to the distribution supervision,
also resulting in improved channel estimation performance.

12.2 DL-based Codebook-Based Precoding/Beam
Selection

In order to pursue faster and larger data transmissions to provide a better
user experience, beamforming is one of the key methods in current wire-
less communication systems. In Chapter 4, we discuss codebook-based pre-
coding/beamforming and conclude that it is a promising way to realize fast
beamforming designs. Specifically, there are two ways to perform codebook-
based beamforming, that is, with and without channel information. While
with channel information, the optimal beam can always be selected for data
transmission, it also brings considerable system overhead from the required
channel estimation and channel feedback. Especially, the complexity and sys-
tem overhead even increase as the array size increases, becoming a challenge
to work with a large array in high-throughput communication systems. On
the other hand, exhaustive beam switching is often required to obtain near-
optimal beams without channel information, prohibiting its use when a large
codebook with narrow beams is adopted. To present highly efficient beam se-
lection without the need of channel information, the authors propose a novel
DL-based image reconstruction approach to aid beam selection in ref. [288].
Inspired by the research on DL applications in the fields of medical imag-
ing [289–291], in the proposed method, only a small number of beams (i.e.,
eigen-beams) will be switched to obtain the received power of those beams.
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Then, beam domain image reconstruction (BDIR) is performed via the pro-
posed DL model, utilizing the received power of eigen-beams to infer the
received power of the rest of the possible beams. By considering the received
power of all beams as an image, the proposed method mimics the medical
image reconstruction workflow in computer vision research areas to perform
efficient received power prediction of all beams without actual transmission,
thus reducing system overhead significantly without channel information.

Specifically, this work considers a downlink mmWave multiple-input single-
output (MISO) transmission scenario without channel knowledge at the trans-
mitter end. It is assumed that the base station (BS) and mobile station (MS)
are equipped with a uniform planar array (UPA) antenna and an omnidirec-
tional antenna, respectively. For downlink transmission, the BS, performing
beamforming techniques by a codebook-based beam selection with NBS ar-
ray elements, is assumed to communicate with the MS with an omnidirec-
tional antenna. Note that the MS does not estimate the channel response
and conduct channel feedback before the beamforming operation, which re-
duces the overhead and time consumption on beamforming. In the consid-
ered three dimension (3D) beamforming case, it is assumed that there are
Nbeam,TX = Nv

beam,TX ×Nh
beam,TX, where N

v
beam,TX represents the number of

beams along the vertical dimension and Nh
beam,TX represent the number of

beams along the horizontal dimension, and the goal is to determine the op-
timal beam from Nbeam,TX choices to serve any specific MS by best utilizing
the underlying channel characteristics. In the general beam selection approach,
by switching the transmitting beam at the BS, a power matrix of dimension
Nv

beam,TX ×Nh
beam,TX can be obtained accordingly. Then the straightforward

solution searches the global optimum value of the receive power map. It can
either be an exhaustive or a numerical search method for achieving the best
beamforming performance. However, the search overhead of exhaustive search
is not affordable and the performance of numerical search methods highly de-
pends on the search overhead. Figure 12.4 illustrates the transformation of the
receive power matrix to the receive power map, named beam-domain received
power map (BDRPM). From this point of view, the beam selection problem
can also be considered as a peak searching issue in an image (receive power
map). Figure 12.5 further shows the illustration of the selected indoor scenario
with several users demanding data transmission. Both line-of-sight (LoS) and
non-line-of-sight (NLoS) scenarios exist for the communication links between
access points (AP) and user equipment (UE).

To address the drawbacks of existing beam selection methods, the authors
propose a DL framework addressing beam selection as a BDIR problem. Thus,
the search overhead of online beam selection can be significantly reduced. The
first research question that needs to be addressed is: how to determine a rep-
resentative subset of beams (i.e., eigen-beams) to switch as a good seed to
facilitate following BDIR? To do so, the proposed framework first employs
a data-driven approach to obtain eigen-beam set as the seeds for BDIR and
exploits the collected data to train the deep neural network (DNN), which
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FIGURE 12.4
Illustration of BDRPM in 3D beamforming case (copyright from ref. [288]).

FIGURE 12.5
Illustration of the considered indoor scenario (copyright from ref. [288]).

performs BDIR. Thus, in the online stage, eigen-beams can be utilized to col-
lect the received power as the seeds for BDIR by switching on the eigen-beams
and recording their corresponding received power to obtain a BDRPM with
only a few colored pixels, known as low-resolution BDRPM. DNN is then
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FIGURE 12.6
Overview of the off-line training stage: the off-line training stage consists of
eigen-beam extraction and BsNet training (in the red circles). The eigen-beam
set offers good seeds for BsNet. BsNet is expected to reconstruct a BDRPM
that is close to the original BDRPM (copyright from ref. [288]).

employed to reconstruct the complete BDRPM (recovered high-resolution
BDRPM) from the low-resolution BDRPM to address the optimal beam in-
dex by switching one more beam. The operation procedure is illustrated in
Figure 12.6. Specifically, the following two operations need to be done in the
offline stage: (1) Eigen-beam Extraction: To address the pixels assigned to
collect the receive power in the online stage for generating a low-resolution
BDRPM, a learning-based approach is employed to extract eigen-beams that
are suitable for the given scenario. Let Y and X denote the high-resolution
and low-resolution BDRPM, respectively. The relationship between them can
be expressed as:

X = R(Y), (12.7)

where R is the mask function designed according to the eigen-beams.
(2) BsNet Training: DNN is also trained as a predictor for the online prediction
(reconstructing high-resolution BDRPM from low-resolution BDRPM). Our
goal is to reconstruct X to an image Ŷ, that is

Ŷ = fBsNet(X). (12.8)

The above procedure is quite similar to the super-resolution image reconstruc-
tion task in the computer vision research area and the input/output relation-
ships of the proposed method are shown in Figure 12.7 for reference. Note the
Eigen-beam set can be obtained in many ways, including statistical, learning
or data-driven methods, depending on its purpose and whether it matches the
subsequent processing scheme. In fact, in follow-up works, different Eigen-
beam set designs are proposed, but the main idea remains the same: to select
a representative subset of beams, then perform image reconstruction to infer
out-of-subset beam behavior. Also note that, different from the conventional
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FIGURE 12.7
Illustration of the online prediction stage: a degenerated BDRPM with a few
colored pixels is used as the input of BsNet. Then, BsNet can reconstruct
a high-resolution BDRPM to solve the beam selection problem without the
ground truth BDRPM (copyright from ref. [288]).

IR problems, the seeds for reconstruction algorithms are the pixels that are
uniformly sampled from the desired image. The BDIR problem shows a no-
ticeable difference where only the pixel with the highest power (i.e., optimal
beam) is important, thus suggesting nonuniform sampling over uniform sam-
pling for improved efficiency. Note that the same idea is also utilized in MRI
reconstruction to present higher reconstruction quality in the region of inter-
est. By doing so, the search overhead of the proposed method can be further
reduced because only the peak value of BDRPM for optimal beam selection
is emphasized, which is different from the general IR problems.

In the original paper, a learning-based approach is employed to train the
Eigen-beam set as the image seeds for BDIR in this work. Specifically, k-
nearest neighbors (k-NN) [292] is employed to classify the BDRPM collected
from M -point locations in a given scenario (e.g., a classroom) into Nbeam,TX

categories and rank them in order, denoted by z. Assuming that the size of
Eigen-beam set is NEB, the entries of Eigen-beam set can be chosen by select-
ing the NEB beams corresponding to the first NEB in terms of z. Thus, the
Eigen-beams of the given scenario can be determined to work as the initial
seeds for the following BDIR procedure. NEB is a parameter that significantly
impacts the search overhead of the online prediction that changes with the ap-
plication scenario and requirements since the persentage of the searching over-
head compared to exhaustive search can be approximated as NEB/Nbeam,TX.
By increasing NEB, the performance of beam selection (i.e., average spec-
tral efficiency (SE) and accuracy of beam selection) can be greatly improved.
However, the time consumption of online prediction also increases with NEB.
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Thus it is a trade-off between accuracy and time consumption. In the sim-
ulation results of different scenarios, this work demonstrates that it requires
only 10% of the total beams and the average SE can achieve up to 99% by
exhaustive search in a given scenario by the proposed method. It significantly
reduces the search overhead while maintaining a good performance.

In Figure 12.7, assuming that the size of the considered codebook is
Nbeam,TX, the input feature of BsNet is an Nbeam,TX×1 normalized real-value
vector, which is a low-resolution BDRPM after vectorization and containsNEB

non-zero values and Nbeam,TX − NEB zeros. The input vector enters several
FCNN-based residual blocks, which are inspired by the design of ResNet [293],
to stepwise reconstruct the high-resolution image from the low-resolution im-
age. A residual block contains four hidden fully connected layers that are
made up of 786, 512, 384, and 300 neurons, respectively. Behind each layer,
a parametric rectified linear unit [294] is introduced as the activation func-
tion to offer nonlinearity. It is noteworthy that the dimension of the output
layer is designed as Nbeam,TX × 1, which is the same as the input feature in
the BsNet design to mimic the image reconstruction process. The number of
residual blocks is set as two to further refine the input low-resolution image.
The simulation result shows that a good performance can be obtained by us-
ing only two residual blocks. Adding more residual blocks into BsNet does not
lead to significant improvement in terms of performance but causes additional
computational complexity.

As for the BsNet training, end to end learning procedure is employed to
train all trainable weights and the bias Θ in BsNet. By treating BsNet as
a function of low-resolution BDRPM input and trainable parameters Θ, the
mean square error (MSE)-based loss function is employed to supervise BsNet
training, which can be expressed as follows:

L(Θ) =
D∑
i=1

(Ŷi − fBsNet(X)i;Θ)2. (12.9)

Here, Ŷi is a high-resolution BDRPM from the training set, Xi is a low-
resolution BDRPM input, which is the downsampled result from Ŷi, and D
is the number of total data in the training set. Finally, the gradient descent-
based optimizer ADAM is utilized to iteratively reduce the loss of each epoch
with the initial learning rate of 0.00005. The batch size is set to 512. After
1500 epochs, the values of Θ are recorded, and BsNet training is completed.
To evaluate the practicality of the proposed method, ray-tracing simulator, a
site-specific radio propagation software that can generate highly convincing
channel behavior via high-performance computing, is employed to generate
the training and testing data in this work. By doing so, the realistic radio
propagation behaviors, including diffused scattering effect, multipath effect,
and penetration loss, are considered in the simulator. It can output the re-
ceived power, channel matrix, and channel impulse response (CIR) of the given
communication system and environment setting for training and evaluation
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purposes in this work. The test scenarios include three environments: a confer-
ence room (CR), a living room (LR), and an enterprise cubicle (EC), which are
specified by the IEEE 802.11ad task group. The CR is the smallest environ-
ment and contains more complicated cases owing to multi-path effect. The EC
is the largest environment and contains many NLoS cases owing to the pres-
ence of more furniture. To test the performance in each scenario, several UEs
are deployed in the room according to the height specifications. The spacing
of UEs in each room is set to a value no more than 0.65(m) and multi-sample
data from each location is collected for training and evaluation purposes. The
total number of training data and testing data is 120000, 180000, and 320000
samples with different size of codebooks for CR, LR, and EC scenarios, re-
spectively. In the training data set, 30% data is randomly picked for valida-
tion to decide the hyperparameters in the proposed framework. All results are
obtained as the average of the testing data set, excluding the training and val-
idation data set. With the above settings, simulation results confirm that the
near-optimal performance (i.e., above 99% of the optimal spectral efficiency
obtained via exhaustive search) can be achieved with 90% reduced beam selec-
tion overhead. Encouraged by the success of this work, this research direction
catches a lot of attention recently, interested readers can refer to follow-up
works [295–298] for more information.

12.3 DL-Based Spectrum Sensing

In Chapter 4, various solutions are discussed to improve the data rate of
communication systems using a given bandwidth, and we also discuss DL-
based channel estimation and beamforming/precoding designs in the previous
sections. Besides those research directions, another straightforward idea to
improve the capability of communication systems is to increase the frequency
resource utilization rate, and DL-based solutions already dominate this re-
search direction, owing to their capability to automatically extract radio uti-
lization status from a contested and noisy environment. Thus, in this section,
we aim to discuss an important and popular research direction, DL-based
spectrum sensing, to see how DL-based solutions can aid in the considered
scenario. Specifically, since most wireless communication scenarios will only
occupy frequency resources intermittently, those wasted frequency resources
can be collected and re-used to improve overall system performance. In this
direction, several research papers [299, 300] reveal that the spectrum under-
utilization problem, which is caused by the existence of idle channels, occurs
in current communication systems, reducing the overall spectral efficiency. To
address this issue, spectrum management [299, 300] has been developed by
detecting idle spectrum and temporarily assigning that spectrum to the de-
manding user, thus improving the overall spectral efficiency. Among all the
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research topics in spectrum management, spectrum sensing is the most widely
discussed in literature [299–302] since it is a prerequisite for mitigating error
propagation. For example, V2X data-coordination scenario [303] is a prac-
tical usage to employ spectrum sensing algorithms in wireless communica-
tions environment. Typically, vehicle-to-infrastructure (V2I) connections will
be assigned specific bands for the high bandwidth entertainment applications
transmission (e.g., video streaming). On the other hand, vehicle-to-vehicle
(V2V) connections may wish to occasionally perform safety message (e.g., ve-
hicle position, speed and heading) transmission using idle bands assigned to
the V2I connections. By employing spectrum sensing (SS) algorithms in V2X
communications, the underutilized spectrum can be reused and consequently
leads to a better overall spectrum efficiency [303]. When it comes to the wide
band scenario, sub-Nyquist sampling [299, 300] must be introduced to avoid
costly hardware requirements. As a result, compressed sensing (CS) algorithms
have been introduced to support spectrum reconstruction from measurements
of sub-Nyquist sampling [301] in the past decade. However, they also suffer
from high computational complexity to reconstruct the under-sampled signal.
Recent research suggests that learning-based compression and reconstruction
outperforms traditional CS algorithms since the local correlation is consid-
ered to reconstruct the desired output, being the main topic we discuss in this
section.

As shown in Figure 12.8, consider a small cell including a base station (BS)
with Nr receiver antennas and several UEs, each with Nt transmitter antennas
for vehicular communications. In the downlink phase of the considered, the BS
may occupy frequency bands from fa to fb by using some of the Ns subcarriers
to perform V2I connections. Considering a transmission pair between the BS
and i th UE, the complex baseband signal can be expressed as:

yi = Hixi + ni, (12.10)

where yi ∈ CNt is the received signal, Hi ∈ CNt×Nr is the channel matrix, and
xi ∈ CNr is the transmitted signal, respectively. Assuming a perfect sampling
process with a Nyquist sampling rate of T = 1/2fb, discrete-time signals can
be obtained from Eq (12.10). When a UE aims to create V2V connections with
surrounding UEs to share safety messages, a SS should be performed to detect
the idle bands from existing V2V and V2I connections. Yet, in a wideband
scenario, to emulate the needed hardware burden, CS must be introduced to
aid the reconstruction of the compressed measurements obtained from sub-
Nyquist sampling. Considering the aforementioned wideband communication
scenario, a combining operation can be conducted at the UE to get the time
domain measurements ri, shown as:

ri = (w∗
i )

Tyi = (w∗
i )

THixi + (w∗
i )

Tni, (12.11)

where w∗
i ∈ CNr is the combining weighting. Then the time domain sig-

nals of the considered wideband system can be expressed as r = s + ξ =
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FIGURE 12.8
Considered THz communications for vehicular environment: In downlink
phase, the base station (BS) will create several transmission links to different
user equirements (UEs) for V2I connections. However, a UE aims to create
V2V connections with surrounding UEs to share safety messages. As a result,
the UE should perform SS first to obtain the information of idle spectrum, then
use that spectrum to perform V2V connections (copyright from ref. [304]).

[r1, ..., ri, ..., rNs ] ∈ CNs , where s = [(w∗
1)

TH1x1, ..., (w
∗
i )

THixi, ...(w
∗
Ns

)T

HNs
xNs

] and ξ = [w∗
1n1, ...,w

∗
i ni, ...w

∗
Ns

nNs
]. Let F denote a Ns-point dis-

crete Fourier transform (DFT). If the signal is sampled at a sub-Nyquist rate,
then the relationship between the clean spectrum s ∈ CNs and under-sampled
measurements z ∈ CNm can be expressed as:

z = ΦF r = ΦF (s+ ξ), (12.12)

where ΦNm×Ns
is the complex-valued sensing matrix. From Eq. (12.12), the

goal is to design the sensing matrix and the corresponding reconstruction algo-
rithm so that the clean spectrum F s can be recovered from the under-sampled
measurements z by the reconstructed spectrum F̂ s. It is noteworthy that once
a high quality reconstructed spectrum is available, a simple energy detector
can be employed to trivially identify the unused frequency bands. Moreover,
the reconstructed spectrum with high quality can enable more complex spec-
trum sharing design in different coexistence models of heterogeneous com-
munication systems [299, 300]. Hence, the motivation is to develop spectrum
reconstruction methods. In this direction, while classic CS solutions, such as
Lasso and its various variants, the unacceptable computation burden prohibits
their usage in practical scenarios, such as vehicular communications and delay-
sensitive scenarios. Thus, given raw spectrum data with under-sampling noise,
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the goal is to reconstruct the originl spectrum from it efficiently and without
a heavy computational burden. In light of this direction, one can notice that
this working flow is quite similar to the image denoising task in the com-
puter vision research area. Thus, the introduction of learning-based solutions
is reasonable and expected to provide a better trade-off between performance
and complexity compared to CS solutions, aiding SS task in wireless commu-
nication with efficiency. Let Θ stand for the trainable weight in the neural
network and f(x;Θ) is the nonlinear transformation with Θ, loss function
can be written as below for the model updating, that is

Loss = ||F s− f(ΦF s;Θ)||2. (12.13)

In Eq. (12.13), the goal is to develop a DL-based function, which takes the
noisy and under-sampled measurement ΦF s as input, to output the recon-
structed clean spectrum close enough to F s. In the literature, there are already
some prior attempts to tackle the similar problem with the aid of DL-based
solutions. For example, in ref. [305], a popular GAN framework is further in-
troduced to provide a more highly convincing spectrum reconstruction results.
However, it still employs a randomly generated sensing matrix to conduct the
compression, failing to perform joint optimization of the compression and re-
construction to obtain the best reconstruction results. Also, the consequently
heavy overhead of the training process of GAN-based SS algorithm creates
an implementation challenge to be employed in real scenario. In conclusion,
the development of a practical SS algorithm, which can be employed in real
ultra-wideband communications, is an unsolved problem. In this paper, the
authors develop a DL-based spectrum reconstruction algorithm, named com-
pression and reconstruction network (CRNet), to offer an efficient SS solution
for THz communications. The authors propose a compression and reconstruc-
tion network (CRNet) for efficient spectrum sensing applications in THz com-
munications. There are two features of the CRNet. First, conventional SS
algorithms, including existing DL-based SS solutions, essentially employ ran-
domly selected (i.e., unstructured) sensing matrix to perform compression to
get under-sampled measurements, implying there is no special design of the
sensing matrix. As an alternative, CRNet firstly introduces the joint design of
compression and reconstruction by developing a structured sensing matrix and
corresponding reconstruction algorithm in an end-to-end learning manner, of-
fering a superior performance compared to existing SS algorithms. Secondly,
compared to GAN-based SS algorithms, the training overhead of CRNet is
reduced significantly. To be more specific, the under-sampled measurements
obtained from the structured sensing matrix are more informative compared
to those from an unstructured sensing matrix, and the reconstruction can be
finished by a low-complexity CNN based-model to get a promising reconstruc-
tion result.

As shown in Figure 12.9, there are three modules in CRNet, compres-
sion, coarse reconstruction, and fine reconstruction modules. The compres-
sion module is a specially-designed one-layer CNN to produce under-sampled
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FIGURE 12.9
The model architecture of the CRNet. In CRNet, there are three modules:
compression, coarse reconstruction, and fine reconstruction. In the compres-
sion and coarse reconstruction modules, the real and imaginary parts of the
original spectrum are compressed and reconstructed, separately. Then, the
fine reconstruction module with ResNet-structure is employed to perform fine-
scale reconstruction to obtain high-fidelity reconstructed spectrum. Note that
the compression and reconstruction process are performed in a end-to-end
training model. As a result, the joint optimization can be performed to obtain
optimal weights (copyright from ref. [304]).

measurements by making the trainable weights in the compression module act
as the content of the sensing matrix, being expressed as:

zDL = ΦDLF r, (12.14)

where F r ∈ CNr is the original spectrum, ΦDL ∈ CNm×Nr is the sensing matrix
designed by the compression module, and zDL ∈ CNm is the under-sampled
measurements from the designed sensing matrix. Given an original spectrum
F r, in order to feed it into DL-based model, the input of the compression
module F r is presented as a real matrix with the size of Ns × 2, containing
the real part and imaginary part of the original complex vector. After the
operation of the compression module, the output zDL is a real matrix with
the size of Nm × 2, standing for the real part and the imaginary part of the
under-sampled measurements. To be more specific, a 1-dimension (1D) CNN
layer is constructed with Nm filters in the compression module. In each filter,
the trainable weight will be created as a matrix with the size of Ns × 2, and
then inner product operation between the input and the trainable weight will
be conducted on the real part and imaginary part separately to obtain the
computed result with the size of 1×2 representing the real part and imaginary
part. This operation reflects the matrix operation between each row of the
sensing matrix ΦDL and the input F r. As there are Nm filters in this CNN
layer, where the size of the output matches Eq. (12.14) to get the compressed
measurements zDL for the following reconstructions. It is noteworthy that
although in the compression module, the computation is performed on the
real part and imaginary part separately, the operation is exactly equivalent
to the inner product on a complex vector, as shown in Eq. (12.14). Moreover,
note that there is no activation function in this 1D CNN layer to ensure the
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whole compression module as a linear operation. Finally, once the training of
the compression module is finished, the trainable weights in each filter (i.e.,
each row of the sensing matrix) can be represented as a pseudo-random (PN)
sequence as shown in ref. [305]. By mixing the received signal with Nm PN
sequences (as there are Nm rows in the sensing matrix ΦDL) and passing
through a low-pass filter, the compressed measurements zDL can be obtained.
For a real scenario, there are no implementation issues to employ the practical
CRNet DL-based spectrum reconstruction algorithm.

After CRNet obtains the compressed measurements zDL, the coarse recon-
struction module aims to provide an initial reconstruction for the following
refinements. To do so, another 1D CNN layer is employed, which has Ns fil-
ters with the size of Nm × 2. After the CNN layer, batch normalization (BN)
and parameter-Relu (PRelu) are employed to accelerate convergence and pro-
vide nonlinearity, respectively. By doing so, an initial reconstruction with the
size of Ns × 2, which is the same as the original spectrum, is obtained for
the following fine reconstruction module. As for the architecture of the fine
reconstruction module, the ResNet-structure [306] gradually refines the ini-
tial reconstruction result. To be more specific, the spectrum reconstruction
problem is treated as a special image reconstruction problem and employs
computer vision techniques to perform meticulous reconstruction. There are
two main advantages to introducing ResNet-structure into the design of the
proposed spectrum reconstruction algorithm. To explain, a typical DL model
with ResNet-structure usually contains several residual blocks, which is built
by several CNN layers. Instead of asking a DL model to provide a reconstruc-
tion result with high quality from scratch, the ResNet-structure lets a residual
block refine the current reconstruction result based on the knowledge from pre-
vious residual blocks. As a result, all the residual blocks can coordinate with
each other to synergistically produce a final reconstruction result. Another ad-
vantage of ResNet-structure is that a DL model with ResNet-structure is more
unlikely to suffer from the over-fitting as the special skip-connection mecha-
nism lets the DL model control the number of efficient weightings. For the
exact architecture of the fine reconstruction module, in each residual block,
three 1D CNN layers with a number of filters 64, 32, and 2, respectively, are
built to refine the initial spectrum reconstruction. Behind each layer, BN and
PRelu are also employed as the setting in the initial reconstruction module.
In this paper, the CRNet comprises six residual blocks to perform fine-scale
reconstruction as experiments with higher numbers of residual blocks do not
improve overall performance but increase computational complexity. From
Figure 12.9, a fully CNN architecture is used in the CRNet DL-based algo-
rithm design. There are two main reasons to use the CNN architecture. First,
the number of trainable weights can be decreased significantly as a result of
the weight-sharing mechanism of the CNN. Simulation results confirm that
the CRNet model outperforms existing DL models with significantly lower
trainable parameters. Secondly, the CRNet fine reconstruction module aims
to capture the occupied spectrum to perform fine-scale reconstruction. As the
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domain knowledge suggests that the occupied spectrum may appear anywhere
in the whole spectrum, the convolution operation introduced by CNN can be
used to capture the pattern of occupied spectrum regardless the location and
number of the occupied spectrum to perform fine-scale reconstruction. An
end-to-end learning is employed to jointly update all the trainable parameters
in CRNet. As a result, the whole compression and reconstruction process can
be designed simultaneously to achieve better performance. Let ΘCR stand for
the trainable weight in the coarse estimator and ΘFR represent the trainable
weight in the fine estimator and f(x;ΘCR.ΘFR) is the nonlinear transforma-
tion with ΘCR and ΘFR, The mean square error (MSE) loss function is set
for the model updating, that is

Loss = ||F s− f(ΦDLF s;ΘCR.ΘFR)||2. (12.15)

Note that during each training cycle, ΦDL, ΘCR, and ΘFR will be updated
jointly via the back propagation process to gradually minimize the training
loss until convergence, generating optimal structured sensing matrix and train-
able weights. Finally, as for the training specifics of the scenario in this paper,
the Adam optimizer minimizes the aforementioned loss function. The initial
learning rate is set as 0.0005, and the number of epochs is set as 20. The
mini-batch mechanism is employed with a batch size of 128 to facilitate fast
convergence. Simulation results reveal that CRNet outperforms existing al-
gorithms and can provide a realistic reconstruction result as the structured
sensing matrix design and the corresponding reconstruction module design. To
be more specific, CRNet can offer superior performance with only 44% train-
ing overhead as compared to existing DL-based solutions. It is noteworthy
that CRNet assumes that blind spectrum reconstruction is performed in this
paper, which means the proposed method can only obtain information from
the under-sampled measurements. While the above assumption is practical,
extra information can be provided to enhance the achieved performance of the
proposed SS solution. Thus, as for future work in this direction, one can con-
sider the case when some of the additional information (e.g., user locations,
channel statistics) is provided to further improve the spectrum reconstruction
for superior SS performance.

12.4 DL-Based Signal Detection

Based on the above discussions, it is clear that learning-based solutions are
especially useful when a noisy or unclear channel model is involved in wireless
communication procedures, thus the knowledge from ample training data can
provide extra information in that scenario to overcome the noisy or unclear
channel model deficits. In fact, a lot of wireless communication procedures are
actually operated in such scenarios for the needs or constraints of low-overhead
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FIGURE 12.10
Proposed system model in ref. [310].

over-the-air data exchanges. For example, besides the previous discussed
spectrum sensing, another downstream wireless communication procedure af-
ter spectrum sensing also shows impressive progress thanks to the develop-
ment of learning-based achievements, that is automatic modulation classifica-
tion task. In spectrum sensing scenarios, the control signal exchange between
transmitter and receiver is minimized, being the motivation to develop solu-
tions for automatic band utilization recognition. Similarly, in the same sce-
nario, the receiver is very likely to also lack modulation and coding selection
information from control signal, being the main motivation for the develop-
ment of automatic modulation classification algorithms. Without any control
message exchanges, automatic modulation classification algorithms can take
raw IQ data as inputs to perform modulation classification, providing prob-
ability to different modulation schemes for final decision, as shown in Figure
12.10. Its effectiveness and straightforward adaption from image classification
tasks soon attract researchers to contribute the development of learning-based
automatic modulation classification methods.

To facilitate our discussion regarding the recent development of learning-
based automatic modulation classification solutions, we first present a system
model for the considered scenario. Specifically, the general system model of
automatic modulation classification problem can be expressed as:

y[n] = x[n,Hk] + w[n], (12.16)

where y[n] is the received radio signal, x[n,Hk] is the transmitted signal
with channel effects, Hk is the underlying channel and w[n] is the additive
white Gaussian noise (AWGN) effect. Furthermore, the transmitted signal
with channel effects term can be further expressed as:

x[n,Hk] = Ane
2πf0nT+θn

∞∑
k=−∞

x[k]h(nT − kT + ϵT ), (12.17)

where An is the signal amplitude of symbol n, f0 is the carrier frequency off-
set, θn is the varying phase offset, T is the symbol duration interval, h() is the
baseband channel, x[k] is the symbol sequence modulated with a specific mod-
ulation scheme, and ϵT is the timing offset between the transmitter and the
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receiver. Under this general system model, the goal of automatic modulation
classification is to determine the specific modulation scheme used to modu-
late the transmitted symbol without any prior knowledge from the transmitter
and channel (since channel estimation also requires prior knowledge from the
transmitter, such as pilot resource information.)

With the above system model and problem statement, different learning-
based solutions are developed, with the aiming to provide high accuracy clas-
sification results even under low SNR scenarios. In the early stage of the
development of learning-based automatic modulation classifications. Several
AMC methods have been proposed by leveraging the fundamental neural net-
work architecture, fully connected neural networks, to learn the handcrafted
features. In ref. [307], authors utilized various features in both the time and
frequency-domain as the inputs to the automatic modulation classifier. The
classifier is built using a simple three-layer fully connected neural network
with ReLU activation layers. The network is trained by the loss function,
which employs negative-log-likelihood to compute the distance between model
output and ground truths. Inspired by this work, refs. [308] and [309] further
improve the feature selection mechanism by utilizing mutual information or
correlation coefficient to select the best subset of features to reduce the com-
plexity of model learning. In this stage, the neural network design of those
works is still basic and not specialized, thus manual feature selection still
plays an important role in aiding the learning of neural networks. In response
to the specially designed network architecture, RNN and CNN are soon intro-
duced into this topic by utilizing their strengths to provide better modulation
classification results. On the one hand, in ref. [311], authors proposed a data-
driven model for AMC by exploiting a LSTM network to process the time
domain amplitude and phase (AP) samples of modulated signals at the re-
ceiver. This deep network was designed with two LSTM layers (each layer has
128 LSTM units) for feature extraction and one fully connected layer for clas-
sification, outperforming the aforementioned solutions. In ref. [312], similar to
the idea we introduced in the previous section, a LSTM-based classifier was
deployed for sub-Nyquist rate wideband spectrum sensing, where the regular
network was able to extract the temporal dependencies between input samples.
The performance of this approach was investigated in terms of correct clas-
sification accuracy under different channel models (e.g., frequency-selective
Rayleigh fading channel and Rician fading channel model with time-varying
and Doppler). Moreover, over-the-air validation is also provided for demon-
stration purposes. Also in this direction, an accurate LSTM-based method was
introduced in ref. [313] to effectively deal with various channel impairments
(Rayleigh fading and mixture AWGN) by additionally exploiting a temporal
attention layer to enrich features. Based on the simulation results of four dig-
ital formats (e.g., BPSK, QPSK, 8-PSK, and 16QAM), the network proved
the superiority over traditional classifiers and other regular LSTM networks.
On the other hand, authors in ref. [314] deployed two CNNs by adapting the
architectures of VGG and ResNet with one-dimensional asymmetric convolu-
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tion filters in layers. Based on the simulation results obtained on the dataset,
two CNNs significantly outperformed traditional AMC methods thanks to
the automatic feature extraction capability offered by convolutional layers.
Furthermore, two CNNs were investigated with different signal lengths and
different numbers of training samples under a synthetic channel impairment,
involving multipath fading, carrier frequency offset, symbol rate offset, and
AWGN.

To facilitate the varying input dimensions, a novel CNN with two training
stages [315] was deployed for classifying the modulations of long symbol-rate
observation sequences. The proposed CNN, namely CNN-AMC, incorporated
the raw signal data with the estimation of symbol SNR as the supplemental
information to enhance pattern learning. The first stage (pre-training) trained
CNN-AMC on a basic dataset in the presence of AWGN and the second stage
(fine-tuning) tuned the trained model with a new dataset by replacing some
top layers with random parameter initialization. As a result, this training
strategy can deal with different channel conditions and adapt various mod-
ulation patterns (i.e., being easy to update model with a new dataset). For
performance evaluation, several simulation results were provided to show the
effectiveness of two-training strategy and also the robustness under channel
deteriorations. Besides, the proposed CNN-AMC revealed the preeminence
in terms of accuracy and complexity over some existing FB approaches. Nu-
merous CNNs have specified sophisticated convolutional blocks and advanced
processing modules by cleverly incorporating multiple convolutional layers
with others operation layers to improve diversified features. From the above
literature, one can notice that handcrafted features are abandoned, and deep
neural network architectures are employed instead to utilize the automatic
feature extraction capability from those deep models, being the main reason
of the provided improvement in terms of classification accuracy. Besides that,
also thanks to another benefit of employing neural network, the provided flex-
ibility makes it easy to offer additional functionality more than pure AMC.
For example, to deal with crashed signals due to additive noise, a CNN-based
framework [316] was introduced as a multi-function neural network with three
modules: SNR prediction, classification, and signal processing, in which the
input signals estimated with low SNR were first re-constructed by U-Net for
signal re-construction and enhancement and then provided to a CNN for clas-
sification. Ref. [317] introduced a novel frequency selection layer to first detect
the frequency band of signals and then filter out the out-of-band noise.

Apart from raw signal data with IQ and AP samples, the constellation
image and spectrum image of digital modulations have been utilized to au-
tomatically identify modulations by CNNs [318], where the modulation clas-
sification is regarded as an image classification task. For example, ref. [319]
evaluated the classification accuracy of AlexNet [320] and GoogleNet [321]
on different datasets of gray-scale and color constellation images. Moreover,
the performance of CNNs was investigated with various image resolutions and
network configurations. Although this approach performs modulation classifi-
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cation more accurately than traditional AMC methods, it is more complex and
requires a longer processing time. To reduce the network complexity, ref. [322]
proposed a lightweight CNN with few convolutional layers to capture the
representational features from regular constellation images and contrast en-
hanced grid constellation images. Moreover, this network exploited intra-class
compactness and inter-class separability using a compressive loss constraint
to improve the accuracy of higher-order digital modulation. Ref. [323] pro-
posed a hierarchical CNN-based modulation classifier, in which one CNN was
designed to classify low-order digital modulation formats using IQ samples
and another one was specified to discriminate high-order digital modulation
formats by learning visual features from constellation images. In the above-
mentioned CNNs, the activations resulted by the last convolutional layer were
flattened to directly connect with neurons in the first fully connected layer,
which dramatically increases the number of trainable parameters. This poor
design strategy can be addressed by arranging a global average pooling layer
before the first fully connected layer to reduce the number of parameters and
also prevent overfitting.



13

DL-Based Interference
Mitigation in Communication
Systems

13.1 DL-Based Resource Allocation Techniques

Multiple-input multiple-output (MIMO) technology is an indispensable com-
ponent in current systems as it has contributed to successfully improve sys-
tem capability without requiring more time-frequency resources; Thus, it has
also encouraged the development of accompanying MIMO system technolo-
gies, such as beamforming to fully utilize the provided spatial diversity and
to better exploit channel characteristics. While optimization-based algorithms
perform beamforming designs by solving an optimization problem, which is
usually non-convex, and is computationally prohibitive in a real-time manner.
Some researchers recently focused on exploiting deep learning (DL) models in
communication system designs, as DL models use simple linear and nonlinear
operations to address complicated problems efficiently. In light of this direc-
tion, ref. [324] is a pioneering work to explore DL-based beamforming designs.
Considering a multi-user MIMO system, where a transmitter with P antennas
is serving K users each with Q antennas at the same time, the received signal
yk at user k can be expressed as:

yk = Hks+ nk, (13.1)

where Hk ∈ CQ×P is the channel matrix, s ∈ CP×1 is the transmitted sig-
nal, and nk is the noise. The transmitted signal is obtained via beamforming
operation as:

s =
K∑

k=1

Wkxk, (13.2)

where xk is the data vector for user k and Wk is the linear beamformer
designed for user k. Then the beamforming design problem can be formulated
as:

[W1, ...,Wk] = argmax
∑
k

ukRk, (13.3)
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satisfying power constraint
∑K

k=1 tr(WkW
H
k ) ≤ pmax. In the above equation,

Rk = log det(Ik + WH
k HH

k J−1HkWk) is the achievable rate for user k and
uk is the weight for user k. With the above setting, the loss function of the
proposed unsupervised learning beamforming design can be expressed as:

l(Θ;H;Ŵ) = −
K∑

k=1

log det(Ik +WH
k HH

k J−1HkWk), (13.4)

where Θ is the trainable weight in the proposed neural network and Ŵ is the
designed beamforming weights for all users based on the channel condition
H = [H1, ...,Hk]. In the training process, Θ will be optimized until conver-

gence, then the neural network is ready to use by producing Ŵ for a new given
H in the testing process. Simulation results confirm that the computation time
can be reduced by at least 80% compared to the well-known WMMSE beam-
forming algorithm, although the performance cannot outperform the result of
the WMMSE beamforming algorithm.

To further improve the beamforming performance of DL-based solutions
but still maintain the real-time implementation advantage, ref. [252] proposes
ResNet-Inspired beamforming (RI-BF), which inherits the advantages of both
optimization-based and DL-based beamforming by employing deep unfolding
techniques for efficient beamforming. Specifically, two DL-based modules, in-
cluding a coarse estimator module and a deep unfolding module, are built in
RI-BF. The coarse estimator module alone can already generate good beam-
forming designs. Then the deep unfolding module, which is developed based
on the concept of the gradient ascent beamforming algorithm, can further en-
hance the performance of the final beamforming result. That is, traditional
gradient ascent beamforming suffers from slow convergence and consequently,
remarkable computational complexity. Although a well-designed initial beam-
forming, which can be provided by our coarse estimator module, can already
reduce the number of iterations significantly, several iterations are still needed
to reach convergence. Instead, by employing the deep unfolding technique to
reference the optimization process of gradient ascent beamforming for the neu-
ral network architecture design, the beamforming efficiency can be improved
significantly. Simulation results demonstrate that the performance and com-
putational complexity of the proposed RI-BF improve significantly compared
to the existing DL-based and optimization-based algorithms, respectively.

In this work, a typical interference channel system containing K pairs of
a transmitter with NT antennas and a receiver with NR antennas is consid-
ered. Each transmitter communicates with its corresponding receiver, causing
interference to other users simultaneously due to the propagation nature of
the wireless channels. The received signal at the i th receiver yi ∈ CNR×1 is
described as follows:

yi = HiiSi +
K∑

j=1,j≠i

HijSj + ni, (13.5)
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where Hij ∈ CNR×NT is the channel between the i th transmitter and the j th
receiver, Si represents the transmitted vector and ni is the noise vector. The
first term is the desired signal sent from the i th transmitter and the second
term represents the interference from other transmitters.

It is assumed that the transmitted vector can be further expressed as
Si = Pixi by means of beamforming, where Pi ∈ CNT×NT and xi ∈ CNT×1

represents the beamformer and data symbol of the i th transmitter. Similarly,
a combiner Mi can be applied at the i th receiver and the decoded output
vector can be written as:

x̂i = MiHiiSi +Mi

K∑
j=1,j ̸=i

HijSj +Mini. (13.6)

H ∈ CK2×NR×NT = [H11, ...,HKK ] as block matrices containing all the chan-
nel information is denoted for later formulation uses. The goal of this work is
to maximize the sum-rate of all users R̃sum to offer a better communication
quantity. Focusing on designing the beamformer P1, ...,PK subject to a given
transmit power constraint Etx, the optimization problem can be formulated
as:

[P1, ...,PK ] = argmax
{Pi}

R̃sum

= argmax
{Pi}

K∑
i=1

log2
∣∣I+HiiPiP

H
i HH

ii (Π
−1
i )
∣∣

subject to

K∑
i=1

tr(PH
i Pi) ≤ Etx

(13.7)

where Πi ∈ CNR×NR represent the effective noise and interference co-
variance matrix at the i th receiver, being further expressed as Πi =∑K

j=1,j≠i HijPjP
H
j HH

ij + σ2
nI. To address the above problem efficiently, the

proposed RI-BF algorithm is shown in Figure 13.1. Specifically, two neural
network modules, a coarse estimator module and a deep unfolding module,
are built in RI-BF. A given channel sample H, will be fed into the coarse
estimator module first, outputting initial beamforming. Then the following
deep unfolding module will produce the final beamforming based on the ini-
tial beamforming, further improving the achieved performance.

As for the design of the proposed coarse estimator, two parallel neural net-
works, namely, the beamforming designer and power allocation actor, are con-
structed to focus on a specific part of complete beamforming designs, that is,
beamforming weighting design and power design, respectively. The entire oper-
ation of the beamforming designer can be expressed as: [P̂BD

1 , P̂BD
2 , ..., P̂BD

K ] =
FBD(H;ΘBD), where ΘBD stands for all trainable weightings in the beam-
forming designer. Similarly, the operation of the power allocation actor can
be described as [P̂PAC

1 , P̂PAC
2 , ..., P̂PAC

K ] = FPAC(H;ΘPAC) where ΘPAC is the
trainable weights in the power allocation actor. As a whole, the output of the
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FIGURE 13.1
(a) Working flow of a typical ResNet-based DL model (b) RI-BF based on the
concept of ResNet (c) NN architecture of RI-BF (copyright from ref. [252]).

coarse estimator, which is the combination of the outputs of the beamforming
designer and the power allocation actor, can be represented as follows:

P̂CE
i =

√
EtxP̂PAC

i

tr(P̂BD
i (P̂BD

i )H)
P̂BD

i . (13.8)

As for the design of the deep unfolding module, two neural networks, a
deep gradient ascent beamformer, and a power allocator were constructed in
the deep unfolding module, similar to the coarse estimator. Recalling that the
goal is to maximize the sum-rate, which can be further expressed as:

(P̃⋆
1, ..., P̃

⋆
K) = argmax

{P̃i}
R̃sum

= argmax
{P̃i}

K∑
i=1

log2

∣∣∣Φ̃i

∣∣∣− ∣∣∣Π̃i

∣∣∣ (13.9)

Φ̃i ∈ C[NR×NR] and Π̃i ∈ C[NR×NR] are further defined as follows:

Φ̃i =
K∑
j=1

βjHijP̃jP̃
H
j HH

ij + σ2
nI. (13.10)

Π̃i =
K∑

j=1,j≠i

βjHijP̃jP̃
H
j HH

ij + σ2
nI. (13.11)

In Eq. (13.8) and Eq. (13.9), a beamforming result Pori
j of j th transmitter

can be expressed as Pori
j =

√
βjP̃j , where βj =

Ê
(j)
tx

tr(P̃jP̃H
j )

and Ê
(j)
tx is the real
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power of j th transmitter. Then, the gradient of Eq. (3.7) can be derived as:

∇P̃k
R̃sum =

2βk
ln 2

K∑
i=1

HH
ikΦ̃

−1
i HikP̃k

− 2β2
k

Ê
(k)
tx · ln 2

K∑
i=1

tr(P̃H
k HH

ikΦ̃
−1
i HikP̃k)P̃k

− 2βk
ln 2

K∑
i=1,i̸=k

HH
ikΠ̃

−1
i HikP̃k

+
2β2

k

Ê
(k)
tx · ln 2

K∑
i=1,i̸=k

tr(P̃kH
H
ikΠ̃

−1
i HikP̃k)P̃k.

(13.12)

By substituting P̂CE
i in Eq. (3.5) for Pori

j, the result of the coarse esti-
mator can be further improved by adopting the updated equation as follows:

P̃k(l) = P̃k(l − 1) + δ∇P̃k
R̃sum, (13.13)

where δ and l denote the step size and number of iterations, respectively of
the gradient ascent algorithm.

Here, we define Gk
j,l = FLea(W

k
j,l · FBat(Vec(P̃k))), where FLea(.) denotes

“LeakyRelu” activation function, FBat stands for batch normalization, Wk
j,l ∈

R1×(NT×NT×2) are the trainable weights, and Vec(.) represents column-wise
vectorization operation. In particular, the l-th layer of deep gradient ascent
beamformer can be characterized as:

∇P̃k
R̃sum = Gk

1,l ·
2βk
ln 2

K∑
i=1

HH
ikΦ̃

−1
i HikP̃k

−Gk
2,l ·

2β2
k

Ê
(k)
tx · ln 2

K∑
i=1

tr(P̃H
k HH

ikΦ̃
−1
i HikP̃k)P̃k

−Gk
3,l ·

2βk
ln 2

K∑
i=1
i ̸=k

HH
ikΠ̃

−1

i HikP̃k

+Gk
4,l ·

2β2
k

Ê
(k)
tx · ln 2

K∑
i=1
i ̸=k

tr(P̃kH
H
ikΠ̃

−1

i HikP̃k)P̃k

(13.14)

and Eq. (3.11) can be transformed as follows:

P̃k(l) = P̃k(l − 1) +Gk
5,l · ∇P̃k

R̃sum. (13.15)

All trainable weightings in the deep gradient ascent beamformer can be ex-
pressed as:

ΘDGA = Wk
1,l,W

k
2,l,W

k
3,l,W

k
4,l,W

k
5,l for l = 1, ..., 10. (13.16)



310 DL-Based Interference Mitigation in Communication Systems

Using Eq. (3.13), the beamforming result of the coarse estimator can be up-

dated efficiently. [P̂DGA
1 , P̂DGA

2 , ..., P̂DGA
K ] = FDGA(H;ΘDGA; P̂

CE) denotes
the entire operation of coarse estimator mathematically. Then, to meet the
power constraint, another power allocation actor, which has the same archi-
tecture as the former one, is built in the deep unfolding module. The opera-
tion is denoted as [P̂PAC2

1 , P̂PAC2
2 , ..., P̂PAC2

K ] = FPAC2(H;ΘPAC2; P̂
CE) where

ΘPAC2 are trainable weightings in the power allocation actor. Overall, the
output of the deep unfolding module, which is the combination of the output
of the deep gradient ascent beamformer and the power allocation actor, can
be represented as follows:

P̂RI
i =

√
EtxP̂PAC2

i

tr(P̂DGA
i (P̂DGA

i )H)
P̂DGA

i . (13.17)

Note that sum-rate is introduced as a loss function to train all the trainable
weightings in the deep unfolding module, expressed as:

L(ΘDGA;ΘPAC2;H; P̂) = −R̃sum. (13.18)

With the above designs, and thus no labeling effort is needed to conduct the
above training process, simulation results confirm that RI-BF outperforms
the existing pure optimization-based and DL-based algorithms in terms of
sum-rate while the complexity is significantly lower than WMMSE in various
system configurations.

13.2 DL-Based Scheduling Techniques

In the above section, we discussed how DL-based solutions can be used to
aid beamforming designs to solve the desired NR-hard optimization problems
with efficiency. Similarly, in multi-user scheduling problem, DL-based solutions
are introduced again as an efficient optimization solver, being the main topic
of this section. Let us consider an orthogonal frequency division multiplexing
(OFDM) system with time-division duplex mode in ref. [325]. In the considered
system, a base station with M antennas aims to serve L single-antenna users
in the coverage. Due to the limited spatial degree of freedom, the base station
can only serve N users subject to N ≤ L and N ≤ M . To do so, L users
periodically send orthogonal pilot sequences to the base station for channel
estimation purposes, and then the base station selects a set of N users for
data transmission through beamforming based on their estimated channel
and guides those selected users to utilize appropriate modulation schemes for
uplink transmission using control channel message. In the uplink procedure,
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at each transmission time interval (TTI), the uplink signal model can be
expressed as:

y = Hu+ n, (13.19)

where y ∈ CM×1 is the received signal at the base station, H ∈ CM×N is
the channel matrix, u ∈ CN×1 is the transmitted information vector from N
users, and n ∈ CM×1 is the noise vector. Note that in such a system, the
value of N can vary in each TTI based on channel condition and base station
load, and we assume N ≤ Nmax holds as its upper bound. In a 5G OFDM
system, considering resource block (RB) as the smallest scheduling unit, the
interested scheduling optimization problem can be formulated as:

argmax
xt
l,b

B∑
b

L∑
l

wt
l,bx

t
l,b,

s.t.

L∑
l

xtl,b ≤ Nmax

(13.20)

where xtl,b is a binary selection indicator of user l at TTI t and RB b.

wt
l,b =

rtl,b∑B
b p

t
l,b

(13.21)

is the weighted rate based on the instantaneous rate rtl,b and received rate ptl,b,
which is further defined as:

ptl,b =

{
pt−1
l,b + rt−1

l,b , if xt−1
l,b = 1

pt−1
l,b , otherwise

(13.22)

Note that by introducing the received rate to normalize the instantaneous rate
in Eq. (13.22), the user fairness can be guaranteed even when some users are
with poor channel conditions. Otherwise, those users might never be selected
due to the poor channel conditions and consequently limited contribution to
the total rate. Furthermore, it is also noteworthy that Eq. (13.20) is an NP-
hard problem since it can be reformulated as an integer linear programming
(ILP) problem. Thus, there are no efficient solutions to solve the aforemen-
tioned optimization problem, and exhaustive search remains the mainstream
method to obtain the optimal solution to this problem. To present an efficient
solver to this problem with the aid of DL-based solutions, the authors in this
work propose a novel scheduler based on the combination of soft actor-critic
(SAC) reinforcement learning (RL) method and k-nearest neighbor (KNN)
method. Specifically, although providing good performance in several real-
time control problems, SAC cannot be directly employed to solve the problem
owing to the fact that SAC is designed to handle continuous action spaces
instead of the considered discrete action spaces. To adapt it to the considered
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problem, KNN algorithm is utilized to discretize SAC results to a discrete ac-
tion space. As a result, the decision of the proposed method can be employed
as a scheduling decision in real communication systems.

Specifically, as for the design of the proposed SAC method, the state space
of user l at TTI t is defined as slt = [γlt, f

l
t , g

l
t] ∈ S = [Γ,F,G], where γlt is

the maximum achievable spectral efficiency of user l at TTI t, f lt is the total
amount of transmitted data by user l until TTI t, and glt is the user group
label of user l at TTI t. The action space of TTI t can be expressed as at ∈ A,
where A is the total set of all possible user scheduling combinations so the
space size grows exponentially as

∑Nmax

i=1 (Li ). Finally, the instantaneous reward
is defined as:

Rt = βγtotalt + (1− β)JFIt, (13.23)

where γtotalt is the sum rate achieved by all scheduled users at TTI t, JFIt is
Jain’s fairness index (JFI), and β is an important factor to control the ratio
between the first term and the second term. In Eq. (13.23), the JFI reward
can be further expressed as:

JFIt =
(
∑L

l=1 f
t
l )

2

L
∑L

l=1(f
t
l )

2
. (13.24)

To elaborate, the JFI reward can be used to promote fairness between users.
Thus, the reward design in Eq. (13.23) aims to consider the system perfor-
mance and user fairness jointly in the scheduling process, where pre-defined
parameter β can be used to adjust the reward emphasis to adopt different re-
quirements in real communication systems. After SAC RL method generates
an appropriate action in the defined action space, this action cannot be used
in the MIMO scheduling decision directly until discretization. Moreover, as
aforementioned, the action space size grows exponentially, further prohibiting
its use in real communication systems. To solve this problem, the authors in
this work propose to use KNN for the discretization. Specifically, after SAC
method generates a so-called proto continuous action (e.g., a real number in
[−1, 1]) from the defined action space, KNN is employed to calculate the l2-
norm between the proto action and pre-defined discrete actions to generate K
discrete actions. Those discrete actions will be fed into the critic network in
SAC structure to compute the expected rewards, so that the one with the high-
est expected reward will be selected as the final action. The whole procedure
is illustrated in Figure 13.2 for reference. In both simulations and real-world
evaluations, the proposed method shows improvements compared to conven-
tional scheduling designs in terms of spectral efficiency and JFI score. In other
words, by generating better scheduling results (i.e., better user grouping, for
example, grouping users with lower channel correlation together to avoid mu-
tual interference), both performance matrices in the reward function design
is improved to demonstrate the benefits provided by the proposed RL-based
solutions.
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FIGURE 13.2
SMART architecture proposed in ref. [325] (reproduced from ref. [325]).
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Similarly, ref. [326] also develops an advanced RL algorithm to solve the
scheduling problem and relax the need for precise channel state information
(CSI). In this work, a downlink orthogonal frequency division multiplexing
access (OFDMA) system is considered, where a base station with N antennas
aims to serve J single-antenna users in the coverage. Thus, for a given subcar-
rier, the channel response can be expressed as H ∈ CJ×N and each row of H
denotes the channel of jth user. With the MIMO advantage, the base station
is able to spatially multiplex K different users using the same time-frequency
resources (i.e., RB in 5G OFDM system) by employing a linear precoding ma-
trix W ∈ CN×K . If hybrid precoding is adopted, the linear precoding matrix
can be further expressed as W = WRFWBB, where WRF ∈ CN×K is the
analog precoder and WBB ∈ CK×K is the digital precoder. Assuming K users
are selected out of J users to be served in a specific TTI, the system model
of such a system can be expressed as:

y = H̃W
√
P ∈ x+ z, (13.25)

where y ∈ CK×1 is the received signal vector of K served user, H̃ ∈ CK×N

is the channel matrix of the K selected users, P ∈ RK×K is a diagonal
power matrix with the power allocated to each selected user, x ∈ CK×1

is the transmitted signal, and z ∈ CK×1 is the noise vector. Defining
M = [m]i,j = H̃W

√
P ∈ CK×K , the signal to interference-plus-noise ratio

of selected user k can be expressed as:

γk =
|mk,k|2

σ2 +
∑K

j≠k |mk,j |2
. (13.26)

Furthermore, if 256-QAM is employed for data transmission, the achievable
rate can be expressed as:

rk = NscNsymb min{log2(1 + γk), 8}(bits/TTI), (13.27)

where Nsc is the number of subcarriers and Nsymb is the number of symbols
for the considered time-frequency resources. In such a system, the statistical
CSI can be expressed as:

Rj =
1

T

T∑
t=1

hH
t,jht,j , (13.28)

where ht,j ∈ C1×N is the channel of user j at TTI t. By using eigenvalue
decomposition, the statistical CSI can be further expressed as:

Rj = UjΛjU
H
j , (13.29)

where Uj ∈ CN×N and Λj ∈ CN×N . With the above setting, user grouping
can be finished via K-means clustering algorithm to split J users into C clus-
ters. In this work, the dominant column eigenvector uj,1 is input to K-means
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algorithm to cluster the users. The centroid of each cluster is updated using
the mean of the dominant eigenvectors of the users currently belonging to the
cluster. Then, the association of users to the clusters is updated by assigning
each user to the cluster whose centroid is closest to its dominant eigenvec-
tor uj,1 until convergence. Regarding the hybrid precoding design, a simple
analog precoder for the k selected users can be designed as:

WRF =
1√
N

[ej∠u1,1 ... ej∠uk,1 ], (13.30)

by using the phase of the dominant eigenvector of each user. Then, the zero-
forcing (ZF) digital precoder can be designed as:

WBB =
HH

eq(HeqH
H
eq)

−1

||HH
eq(HeqHH

eq)
−1||F

, (13.31)

where Heq = H̃WRF ∈ CK×K . Assuming users belonging to different clusters
are low-correlated with each user, the interference among users from different
clusters becomes negligible by using ZF digital precoding, which can be used
to reduce the number of possible compositions of groups of users. That is,
assuming the reward d is set as the system achievable rate of scheduled K
users, the original action space is:

A = (JK). (13.32)

Using the previous negligible interference assumption and assuming there is
a virtual agent of each group to select users in the group to be scheduled for
services, the reduced action space is given as:

Ac = (Jc

Kc
), (13.33)

where Jc is the total number of scheduled users and Kc is the total number
of users of cluster c. Assuming that each virtual cluster has its action values
stored in dc = RAc×1, the real action value of an action is defined as the
mean received reward when the action is selected. Thus, by the law of large
numbers, the incremental average updating method can be used to update dc,
further expressed as:

dc(ac) = dc(ac) +
1

nc(ac)
(d− dc(ac)), (13.34)

where ac is the given action and nc is the vector containing the number of
times that each action was selected. With the above setting, the proposed RL
algorithm is able to perform user scheduling without precise CSI. After user
scheduling, only the selected users will be required to provide feedback on CSI
for precoder design purposes. That is, the base station will take the follow-
ing steps in each TTI: (1) schedule users using the proposed RL method; (2)
require selected users to perform CSI feedback to design an analog precoder;
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(3) compute a digital precoder based on the designed analog precoder. Note
that this procedure is different from most existing solutions, which often re-
quire CSI knowledge to perform user scheduling, instead of using statistical
CSI in this work. In other words, RL is employed to perform user scheduling
based on statistical CSI. Simulation results confirm that the proposed method
outperforms the conventional scheduling method by offering improved system
throughput and reducing needed CSI feedback simultaneously.

13.3 DL-Based NOMA Transceiver Designs

In the direction of learning-based NOMA transceiver designs, there are also
several impressive works, utilizing the power of DL solutions to offer a bet-
ter trade-off between achieved performance and computational complexity. In
ref. [327], a DL model is proposed to perform power allocation to improve
both sum data rate and energy efficiency of MIMO-NOMA systems. In the
considered scenario, a base station with M antennas is severing D multi-
antenna users, each with Nr ≥M antennas. To adopt MIMO-NOMA system,
all the users are grouped into M clusters and each cluster is with K users
(i.e., D = KM). Letting s ∈ CM×1 presents the information vector in the
base station, which can be further expressed as:

s =

 s̄1
...
s̄M

 =

 β1,1s1,1 + · · ·+ β1,Ks1,K
...

βM,1sM,1 + · · ·+ βM,KsM,K

 . (13.35)

In Eq. (13.35), sm,k ∼ CN (0, ϵ) is the information signal transmitted to the
user k in the cluster m. The transmit power per symbol is denoted as ϵ and
βi,j is the NOMA power allocation coefficient. The information vector will be
processed in the base station before transmission, showing as:

x = Ps, (13.36)

where P ∈ CM×M is the precoding matrix. Thus, if we denote Hm,k ∈ CNr×M

as the channel matrix for the user k in the cluster m, the received signal at
the user k in the first cluster can be expressed as:

y1,k = H1,kPs+ z1,k, (13.37)

where z1,k is the noise vector. Then, by the NOMA general assumption that
β1,1 ≤ β1,2 ≤ · · · ≤ β1,K , the channel gain can also be ordered as:

|vH
1,KH1,K−1p1|2 ≤ |vH

1,K−1H1,K−1p1|2 ≤ · · · ≤ |vH
1,1H1,1p1|2, (13.38)
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where v1,k represents the detection vector at user k and pi is the i-th column
of P. Assuming classical maximum, ratio combining (MRC) is utilized for
detection purposes, given a fixed P, the detection vector satisfies

vH
1,khm,1k = 0, (13.39)

where hm,1k is the mcolumn of H1,k. Under this constraint, v1,k can be ob-
tained as:

v1,k = U1,kn1,k. (13.40)

In Eq. (13.40)U1,k can be obtained by including all left singular vectors of ma-
trix [h2,1k,h3,1k · · ·hM,1k]. Also, the normalized vector n1,k can be obtained
as:

n1,k =
UH

1,kh1,1k

|UH
1,kh1,1k|

. (13.41)

By utilizing this detection vector, the received signal in the user k of the first
cluster can be expressed as:

vH
1,ky1,k = vH

1,kH1,kPs+ vH
1,kz1,k

= vH
1,kH1,kp1(β1,1s1,1 + · · ·+ β1,Ks1,K)

+

M∑
m=2

vH
1,kH1,kpms̄m + vH

1,kz1,k.

(13.42)

Furthermore, assuming perfect SIC is performed to let each user in the same
cluster decode the desired information successfully, the SINR of user k in the
first cluster can be expressed as:

γk1,k =
|vH

1,kH1,kp1|2β2
1,k∑k−1

n=1 |vH
1,kH1,kp1|2β2

1,n +
∑M

m=2 |vH
1,kH1,kpm|2 + |v1,k|2 1

η

, (13.43)

where η is the transmitted SNR. The data rate of user k in the first cluster
can be further expressed as:

R1,k = log2(1 + γk1,k), (13.44)

and the sum rate is

Rsum =

M∑
m=1

K∑
k=1

Rm,k. (13.45)

With the above setting, the interested optimization problem in this work can
be formulated as:

max
pm,βi,j

Rsum = max
pm,βi,j

M∑
m=1

K∑
k=1

Rm,k

s.t. 0 ≤ βm,k ≤ 1,∀m, k and 0 ≤ ||pm|| ≤ Ptr,∀m.

(13.46)
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FIGURE 13.3
A CDNN-based MIMO-NOMA framework (Conv represents the convolutional
layer, FC represents the fully connected layer, MaxPool means the maxpoool-
ing operation, and S represents the strides). This framework consists of 11
Conv layers and 2 FC layers, as well as one Maxpooling layer. Also, precoding
P contains precoders for each antenna, and the output precoder pm and its
corresponding power allocation factors are the optimal power allocation re-
sults (copyright from ref. [327]).

The total power constraint and minimum data rate requirement can be
further considered in Eq. (13.46) by satisfying

∑M
m=1 ||pm|| ≤ Ptr,∀m,∑M

m=1

∑K
k=1 βm,k = 1, and Rm,k ≥ Rmin, where Ptr is the pre-defined power

constraint and Rmin is the pre-defined minimum data rate. Owing to the
non-convex nature of the optimization problem Eq. (13.46), there is no effi-
cient solution to address this problem so the motivation for introducing DL-
based solutions is to solve the underlying algorithm deficit. In this work, a
DL model is proposed to perform an efficient exhaustive search to address
the interested power allocation problem without heavy computational bur-
den. Specifically, as shown in Figure 13.3, the model inputs include the chan-
nel matrix hm, the precoding matrix P, and the power allocation factors
{β1,1, · · ·βi,j , · · ·βM,K} and the output of the model is normalized power al-
location results {||p̄1||, · · · ||p̄2||, · · · ||p̄M ||}. The loss of the proposed model is
formulated as:

lCDNN = E

[
−

K∑
k=1

M∑
m=1

Rm,k + τ
K∑

k=1

M∑
m=1

(Rmin −Rm,k)− ρ
M∑

m=1

pm

]
+ l2

= − 1

NMK

N∑
j=1

Rsum(βi,j , pm)

+ τ

K∑
k=1

M∑
m=1

(Rmin −Rm,k)− ρ
M∑

m=1

pm + l2,

(13.47)
where N is the number of training samples and l2 norm of trainable weights
are considered for training robustness. While Eq. (13.37) can be considered as
an unsupervised optimizer to maximize Rsum by adjusting power allocation
variables βi,j and pm, the aforementioned power constraints in the original
optimization problem are also formulated as the penalty terms in Eq. (13.37),
causing loss decreasing if violated. Thus, by using the above loss function to
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train the proposed model, the model will be trained to find the optimal power
allocation results according to the input to maximize the loss function through
the backpropagation algorithm. Once the optimal mapping from a given input
to the outputted power allocation results is obtained, the optimal trainable
weight will be saved so that real-time power allocation can be performed in the
testing phase by inputting an input from a new scenario. Simulation results
confirm that the proposed method outperforms existing solutions in terms of
both data rate and energy efficiency. Moreover, the computational complexity
is also improved since only simple matrix operations are needed in the testing
phase to output the power allocation results for a given scenario.

Besides this work, there are also several great survey papers discussing the
recent achievements of learning-based NOMA solutions. interested readers can
refer to refs. [328–330] for more information.

13.4 DL-Based FHSS

After discussing how to utilize the available spatial, time, and power re-
sources to provide interference mitigation capability to a wireless commu-
nication system with the aid of DL-based solutions, we conclude this chapter
by introducing the development of learning-based FHSS solutions for anti-
interference purposes. Specifically, besides the interference caused by other
users in the same time-frequency resources, interference introduced by mali-
cious users (i.e., jammers) should also be considered, especially for military
communication purposes. Since the goal of the jammer is to try its best to
destroy legitimate communications and the goal of the legitimate transceiver
is to maintain the communication quality, the problem is also formulated as
a game with two players. In this direction, RL has already shown impressive
capability to address such problems, such as video games or Go games against
other players. Thus, several great works utilize reinforcement learning for the
FHSS transceiver design, aiming to obtain the optimal channel selection pol-
icy to improve the system capacity during malicious attacks, being the main
topic we will discuss in this section.

In this direction, ref. [331] is a pioneering work for the development of RL
anti-jamming FHSS system design. In this work, a wireless communication
scenario, where a transmitter-receiver pair is operating under a jamming at-
tack, is considered as shown in Figure 13.4. In this work, it is assumed that
there is a reinforcement agent, that can make anti-jamming decisions based
on receiver observations, and then send the decision to the transmitter for
decision execution. It is also assumed that the wideband sensing mechanism
is performed on the receiver side so that the transmitter can adjust the trans-
mitting frequency band without notifying the receiver without interrupting
communication. At the same time, the jammer can also switch its jamming
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FIGURE 13.4
System model in ref. [331].

band based on different jamming patterns. Thus, through wideband sens-
ing, the historical jamming information can be detected and stored to learn
the jamming pattern and adjust the transmitter decision accordingly. To do
so, the spectrum vector of the communication band at time t is denoted as

Pt = (pt,1, pt,2, · · · , pt,i, · · · , pt,n), where pt,i = 10 log[
∫ (i+1)∆f

i∆f
S(f + fL)df ] is

the spectral energy of frequency i at time t, S(f) is the power spectral density
(PSD) function, and ∆f is the spectrum resolution. Then the time-frequency
characteristic St (i.e., spectral waterfall diagram) can be expressed as:

St =

 Pt−1

...
Pt−M

 =

 pt−1,1 pt−1,2 · · · pt−1,N

...
...

. . .
...

pt−M,1 pt−M,2 · · · pt−M,N

 . (13.48)

Note through the introduction of the time-frequency characteristic, the jam-
ming behavior can be tackled as a pattern recognition task in this time-
frequency image, thus powerful DL-based solutions can be employed from
the computer vision research area without heavy modifications. Assuming the
central frequency of the legitimate link is ft, the central frequency of the jam-
ming link is fj , the user’s transmission bandwidth is b, the PSD function of
noise is n(f), the PSD function of the jamming signal is Jt, the transmission
power is p, the channel gain is gt and the channel gain of the jamming link is
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gj , the SINR of the received signal can be expressed as:

η(ft, fj) =
gtp∫ ft+b/2

ft−b/2
{n(f) +

∑J
j=1 gjJt(f − fj)}df

. (13.49)

Denote u(ft, fj) as the indicator function for successful transmission, which
can be expressed as:

u(ft, fj) =

{
rm, η(ft, fj) ≥ ηth
0, η(ft, fj) < ηth

, (13.50)

ηth in the equation is the pre-defined SINR threshold to tell if the legitimate
communication is successful or not and rm is a positive reward when con-
ducting successful transmissions. Assuming that the communication frequency
range equals the jamming frequency range as Bu = Bj and the user’s trans-
mission band is represented as bu, the number of frequency selection choices
the transmitter can make is n = Bu

bu
. Thus, the action space can be expressed

as A = {a1, a2, · · · , an}, and a(t) ∈ A represents the channel selection result
at time t. However, switching channels also comes with cost, which can be
expressed as:

W (ft, fj) =

{
0, a(t) = a(t− 1)

c, a(t) ̸= a(t− 1),
(13.51)

where c is the channel switching cost. With the above prior, the interested
optimization problem can be formulated as:

max
f
′
t∈A

U =
∞∑
t=0

γt(u(ft, fj)−W (ft, fj)), (13.52)

where γ ∈ (0, 1) is the discount factor. In this work, the goal is to make anti-
jamming decisions by adjusting the transmitting frequency band to maximize
the cumulative future reward shown in Eq. (13.52) to maximize the transmis-
sion success rate while minimizing switching costs. From the above discussion,
one can notice that the jamming pattern is the key to anti-jamming decisions.
If the jamming pattern can be learned from the historical data, the trans-
mitter can use this information to adjust the future selected frequency band
to increase the transmission success rate. To do so, a DL model is proposed
to perform jamming pattern classification. As shown in Figure 13.5, the pro-
posed model is based on CNN to perform efficient classification based on given
time-frequency characteristics. After the jamming mode classification, the re-
sult will be passed to the RL agent to make the FHSS decision, as shown in
Figure 13.5. Specifically, classical Q-learning is adopted for the development
of the proposed RL agent. Utilizing the current channel status as the state,
the agent is trained to perform frequency band selection under the previously
discussed action space. Then based on whether the channel is jammed or
not in the next timeslot, the aforementioned reward can be computed for RL
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FIGURE 13.5
Algorithm flowchart in ref. [331].

training purposes. Note that to simplify the training process and relax the
need for huge data samples, several RL agents will be trained to learn the
best frequency switching policy under different jamming patterns. However,
in the testing phase, only one agent will be triggered at one time based on
the jamming mode classification result of the underlying environment. Sim-
ulation results confirm the effectiveness and practicability of the proposed
anti-jamming communication method by showing improved throughput and
lower switching times compared to existing works.

Following similar ideas, RL is widely used in the FHSS anti-jamming de-
signs. Interested readers are suggested to refer to refs. [332–335] for the recent
development in this direction.



14

DL-Based Signal Processing in
Radar Systems

14.1 DL-Based Radar Waveform Designs

Similar to the concept of deep learning (DL)-based communication waveform
designs, DL-based algorithms have also been introduced to aid waveform-
related research activities in recent years. Specifically, current related litera-
ture can be categorized into several directions. First, we notice that several
works utilize learning-based schemes to recognize radar waveforms for jam-
ming purposes [336–339]. To elaborate, besides commercial usage, radar sys-
tems also play a critical role in military usage to offer accurate information
about detected objects, such as airplanes or battleships. In contrast, jamming
can be used as an effective way to avoid information collection from the enemy.
Thus, if we can recognize the radar waveform that the enemy currently uses,
it starts to be possible to perform more precise jamming to interrupt radar
sensing with minimal resources. For this reason, learning-based schemes are
widely used to recognize different radar waveforms in realistic environments.
Compared to traditional statistic-based recognition methods, the capability of
learning-based algorithms to extract features helps to increase the detection
rate while maintaining the false alarm rate in such scenarios. Second, to tackle
the above precise jamming to the transmitted radar waveforms, anti-jamming
methods are also developed utilizing the capability of DL-based algorithms by
introducing learning-based schemes to select radar waveforms according to the
current environment [340–343]. Specifically, if the employed radar transceiver
is capable of operating several different radar waveforms, then reinforcement
learning (RL)-based algorithms can be employed straightforwardly to improve
the radar transceiver by offering adaptive radar transition capability. To elab-
orate, after sending out a specific radar waveform, the selected waveform, and
the corresponding key performance metrics can be used as the state to the
RL agent, and then the RL agent is trained to select the next waveform to
be transmitted as the action to improve the key performance metrics (i.e., re-
ward). With sufficient offline training, the RL agent can learn how to perform
anti-jamming radar sensing under a jamming attack. Moreover, the above
framework is flexible and can be easily extended by adding more states or
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actions. For example, channel estimation results can also be added as addi-
tional inputs to let RL agents have more understanding of the underlying
radio environment, thus improving the action selection capability. Besides the
model selection, which is mainly modeling the waveform design problem as
a classification problem, there is good work in introducing generative adver-
sarial learning to design radar waveforms from scratch [344]. The considered
scenario can be described by the following signal model:

x(t) = αs(t) + n(t) + b(t), (14.1)

where x(t) is the detector’s received signal, s(t) is the emitted radar signal, and
α is the energy attenuation coefficient. Furthermore, n(t) is the noise vector,
and b(t) is the RF background signal(s) present in the spectrum. The aim of
this work is to design a radar signal s(t) that has good radar performance
and is difficult to detect. For this purpose, to quantize radar performance, the
ambiguity function Â(τ, FD) is defined as:

Â(τ, FD) =

∫ ∞

−∞
s(t)e(j2πFDt)s∗(t− τ)dt, (14.2)

where τ is the time shift and FD is the Doppler shift. With this definition,
the ideal behavior can be captured by the ambiguity function as:

ÂT (τ, FD) =

{
ξ, if(τ, FD) = (0, 0)

0, otherwise
(14.3)

which is the ideal ambiguity function with only a clean variable target peak
ξ. Thus, we can evaluate the radar detecting performance by comparing the
generated ambiguity function with the above target ambiguity function. For
the mainlobe peak, the similarity can be captured as:

Lmain =
1

M
||ReLU(ÂT (0, 0)− ÂG(0, 0))||22, (14.4)

where M is the batch size of the generated waveforms and ÂG is a batch of
ambiguity functions computed from the generated waveforms. For the sidelobe
parts, the similarity can be captured as:

Lside =
1

M
||(ÂT (τ, FD)− Γ ◦ ÂG(τ, FD))||22, (14.5)

to evaluate all sidelobe parts (i.e., (τ, FD) ≠ (0, 0)). In Eq. (14.5), Γ is a weight
matrix that increases the loss for the zero-Doppler slice, which is provided in
the original paper [344]. This design aims to prevent optimizing to minima
with low Doppler sidelobes and high zero-Doppler sidelobes. The above two
equations are then combined as the final ambiguity loss function as below to
supervise the detection performance of the generated radar waveform.

Lambig = Lmain + Lside(τ, FD)|(τ,FD)̸=(0,0). (14.6)
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Besides the radar detection performance guarantee, the aim of this work is to
also develop radar waveforms satisfying a low probability of being detected.
In this direction, traditional methods struggle since it is hard to model the
optimization problem to directly optimize waveforms, allowing a low probabil-
ity of being detected. Thanks to the power of generative adversarial learning,
this low probability of being detected can be optimized by optimizing the
similarity of the generated waveforms and the background radio environment.
Specifically, a discriminator will be developed as a binary classifier, utilizing
the feature extraction capability to distinguish the generated waveform and
background radio environment, and then a generator will be trained to develop
the generated waveform, which can fool the discriminator. In this setting, the
only way to fool the discriminator is to design a radar waveform that blends
into the radio environment, thus achieving a low probability of being detected
purpose. The challenge here is that the radio environment is time-dependent.
To elaborate, although the long-term statistics of the radio environment might
be consistent, the radio environment shows a nonstationary and highly fluc-
tuating nature in short-term statistics. To tackle this challenge, an advanced
conditional generative adversarial network (cGAN) is employed to enable the
generator to produce waveforms from the conditional distribution Pg|y, where
y is the instantaneous RF background measurement taken at or near the time
of inference and g is the generated waveform distribution from the generator.
The final adversarial loss to supervise the generator can be expressed as:

LW = min
G

max
D

Ex∼Pb
[D(x|y)]− Ex̄∼Pg|y [D(x̄|y)] + λLregularization, (14.7)

where G is the generator, D is the discriminator, Pb is the background radio
environment distribution and x is a sample set sampling from this distribution,
x̄ is a sample set sampling from the generated waveform dataset, λ is a pre-
set constant to control the ratio of regularization loss, and Lregularization is
the regularization loss developed by 1-Lipschitz constraint to improve the
training stability. Finally, the final loss function can be expressed as below by
combining the ambiguity loss and cGAN loss:

Ltotal = LW + ηLambig, (14.8)

where η is a scaling parameter to set the strength of the ambiguity loss.
The above training procedure is also expressed in Figure 14.1 for reference.
The evaluation results demonstrate that the generated waveforms achieve up
to a 90% reduction in detectability when compared to traditional waveform
design methods and retain desirable ambiguity characteristics. Furthermore,
the proposed method is able to tune the generated waveforms for a desired
trade-off between detectability and sensing accuracy.

Besides the above two applications, there are several great works directly
employing end-to-end learning to aid radar transceiver designs [345,346]. The
idea is similar to using an autoencoder to perform communication system
design, thus avoiding sophisticated joint modeling and optimization when
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FIGURE 14.1
Adversarial Training Framework: Training process for our cWGAN- GP, where
our generator learns to produce waveforms with desirable ambiguity functions
that mimic the RF background. Training is initially performed without the
ambiguity loss and alternates between training the critic and the generator.
Once converged, the generator is fine-tuned for a small number of epochs with
both the cWGAN-GP loss and ambiguity loss (copyright from ref. [344]).

designing radar transceivers. Specifically, this representative work [345] ad-
dresses the problem of data-driven joint design of transmitted waveforms
and detectors in radar systems by introducing two novel learning-based ap-
proaches. Unlike traditional radar design methods that rely on rigid mathe-
matical models, the proposed frameworks in this work directly leverage end-
to-end learning to perform radar waveform designs for enhanced adaptabil-
ity to environmental uncertainties. The first approach employs an alternating
training strategy, where the detector undergoes supervised learning for a fixed
waveform while the transmitter is optimized using RL for a fixed detector. The
second approach simultaneously trains both components, potentially acceler-
ating convergence by reducing the number of required radar transmissions.
Furthermore, the proposed framework can be extended to incorporate fur-
ther operational waveform constraints, such as peak-to-average power ratio
(PAPR) and spectral compatibility. Theoretical analyses establish the effec-
tiveness of these methods in dynamically adapting transmitted waveforms to
environmental conditions while maintaining design constraints. In conclusion,
the contributions of this work include the development of a radar system
architecture based on feedforward multilayer neural networks, the formula-
tion of two end-to-end learning algorithms, and a theoretical comparison of
alternating and simultaneous training paradigms. Additionally, the authors
also justify RL-based transmitter training by analyzing its gradient proper-
ties in relation to an ideal model-based likelihood function. Through these
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advancements, this work demonstrates the potential of learning-based radar
design to improve detection performance and robustness in complex environ-
ments.

14.2 DL-Based Range and Doppler Estimation

Based on the discussion in Chapter 6, the constant false alarm rate (CFAR)
algorithm is an important step in radar range and Doppler estimation. It
tells which peak in the range-Doppler (RD) map is associated with the real
targets instead of noise or clusters. Specifically, the core concept of target de-
tection schemes is to evaluate the noise level in a RD map according to the
neighbor cells surrounding the cell under test (CUT) and set an appropriate
threshold for detecting targets. The cell-averaging CFAR (CA-CFAR) [347]
utilizes the arithmetic mean of the power of reference cells as noise level
estimates. One of its variants, namely the greatest of cell-averaging CFAR
(GOCA-CFAR) [348], can improve the false alarm rate of the original scheme.
Although both schemes perform well in homogeneous scenarios, their perfor-
mance degrades in multi-target scenarios based on erroneous noise level esti-
mation. The smallest of cell-averaging CFAR (SOCA-CFAR) [349] has been
proposed to improve performance in multi-target scenarios. However, it does
not improve performance significantly in dense multi-target scenarios. Order-
statistic CFAR (OS-CFAR) [350] can handle such problems, but it introduces
significant computational complexity. Therefore, it is necessary to develop a
robust scheme for multi-target scenarios with lower computational complex-
ity. Recently, the authors in ref. [351] proposed exploiting DL techniques to
improve the detection performance with CA-CFAR with a lower false alarm
rate. In ref. [352], a support vector machine model for selecting the best CFAR
scheme for a given reference window is proposed. However, the performance of
these schemes is only marginally better than that of conventional schemes be-
cause they simply train models to emulate the conventional ones or choose an
optimal conventional scheme. Moreover, it is also observed that the degenera-
tion of well-known CFAR schemes occurs at high signal-to-noise ratios (SNR)
and in multi-target scenarios. In such cases, strong side-lobes associated with
target returns cause overestimated noise levels, resulting in lower detection
rates. Hereafter, this phenomenon is referred to as the side-lobe issue for the
sake of brevity. If side-lobes can be eliminated, superior noise estimation re-
sults can be achieved. In refs. [353, 354], the authors employ a DL model to
tackle the denoising problem. Their works suggest that DL models can recog-
nize the structured pattern and remove noise patterns in an image. Inspired by
these works, ref. [355] proposes a novel CFAR detection scheme aided by a DL
model called DL-CFAR. The proposed model learns the structures of targets
in an RD map and eliminates those structures to acquire an RD map with
pure noise, which can be used to estimate noise levels more accurately and
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facilitate CFAR detection that is robust in various scenarios. This paper is the
first attempt to enhance the noise estimation process of CFAR. As a result,
the proposed scheme outperforms conventional CFAR schemes significantly.
Furthermore, the performance of conventional CFAR schemes is influenced by
parameter settings (guard cell size, order selection). Poor parameter settings
in conventional CFAR schemes may lead to significant performance decay. In
contrast, no parameter settings are required for DL-CFAR. As a result, the
proposed method is a practical CFAR target detection scheme for real-world
implementation.

Target information (i.e., range and Doppler velocity of each target rel-
ative to the observer) is acquired by performing target detection based on
self-radiated returns from targets. In frequency modulated continuous wave
(FMCW) radar and orthogonal frequency division modulation radar (OFDM),
time-frequency channel coefficients are exploited to derive target information.
In a general form, the channel coefficient of the kth frequency and lth time
sample of a target return can be represented as:

(H)k,j =
H−1∑
h=0

bhe
−2πfD,hlTse−2πτhk∆fejϕh , (14.9)

where H is a channel coefficient matrix (CCM) consisting of H target returns,
and Ts and ∆f are the sample period and frequency spacing, respectively. bh,
fD,h, τh, and ϕh are the complex amplitude, Doppler shift, round-trip time,
and random phase rotation, respectively, associated with the hth target return.
Specifically, considering FMCW radar as an example, we transmit a frame
composed ofM chirps (a chirp is a sinusoid whose frequency increases linearly
with time), then mix the transmitted and received chirps intoM intermediate
frequency (IF) signals in chirp-by-chirp fashion. Next, we extract N samples
of the IF signal in each chirp using a predetermined sampling period. The
CCM is constructed from cascading columns of these chirp-by-chirp samples,
as illustrated in Figure 14.2. In this case, the sampling period is Ts, and the
frequency spacing of the adjacent samples in each chirp is ∆f . The 2D fast
Fourier transform (FFT) operation is a well-known solution for identifying
sinusoids in a discrete-time signal. An RD map is generated by performing a
2D FFT on a CCM H, which can be represented as:

RDM(n,m) = |2D FFT(H)(n,m)|2

=

∣∣∣∣∣
N−1∑
k=0

M−1∑
l=0

(H)k,le
j2πlm/Mej2πkn/N

∣∣∣∣∣
2

,
(14.10)

where N and M are the FFT lengths in the frequency and time domains,
respectively. An RD map is composed of N ×M RD bins. Maximum ratio
combining (MRC) is achieved at RD bins for which the range and Doppler ve-
locity of targets match both discrete sinusoidal components in both domains.
Such RD bins are referred to as MRC RD bins. Note that a processing gain of
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FIGURE 14.2
Illustration of CCM generation for FMCW radar (copyright from ref. [355]).

10log10(NM) dB can be achieved after performing the 2D FFT operation to
enhance the power of target returns. Therefore, to derive target information,
a CFAR detection scheme can be applied to identify peaks.

The proposed scheme deals with an RD map with the size of NW ×MW.
For an RD map of a large size, one can further divide it into several RD
maps with the size of NW ×MW such that they are processed independently.
Our scheme focuses on the development of a neural network that can rec-
ognize and remove target patterns from an original RD map to obtain more
accurate noise level estimations. DL-CFAR is summarized in Figure 14.3. In
Figure 14.3 (a), an input RD map is first fed into a truncating operator as
a truncated RD map. The resulting RD map is then treated as an input for
the proposed neural network. The truncated RD map can be considered as a
combination of a truncated target RD map and a noise RD map, as shown in
Figure 14.3(b). The proposed neural network can remove target patterns in
the truncated RD map, allowing us to approximate a pure noise RD map and
estimate noise levels at each RD bin in the RD map accurately. The proposed
neural network must be able to handle input RD maps with various magni-
tudes. A conventional solution to this problem is to employ a normalization
operator prior to processing by the neural network. However, the noise would
be normalized to nearly zero for every RD bin in the RD map at high SNR,
making it fail to update the weights of the neural network properly. There-
fore, a truncating operator is utilized to handle different RD map magnitudes.
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FIGURE 14.3
(a) Overview of the proposed DL-CFAR. (b) Truncated RD map combining
a truncated target RD map and pure noise RD map. The proposed neural
network can remove the truncated target RD map. As a result, the output
of the proposed neural network is similar to the pure noise RD map. (c) The
architecture of the proposed neural network (copyright from ref. [355]).

Although strong target patterns may be truncated, the proposed neural net-
work still has the ability to recognize and remove such patterns from the RD
map, as demonstrated by the simulation results discussed later in this paper.
Figure 14.3(c) presents the architecture of the proposed neural network. The
inputs for the proposed neural network are fed into several residual blocks
first. In each residual block, convolutional neural networks (CNNs) are em-
ployed, and each CNN layer further utilizes kernels with dimensions of 3× 3
to exploit the spatial local correlations in input RD maps. The number of
feature maps in each layer are 32, 16, 8, and 1, respectively, and the output
size for each layer in the residual block is the same as the size of the input
RD map, which is NW ×MW. Batch normalization [356] is performed after
each CNN to speed up convergence and avoid over-fitting problems. Finally,
parametric rectified linear unit (PReLU) [357] is used as an activation func-
tion to introduce nonlinearity. The output of the residual block chain will be
fed into two fully-connected layers. The number of neurons in the two layers
is 512 and NWMW, respectively. Following these layers, a rectified linear unit
(ReLU) is employed as an activation function. It is noteworthy that the out-
put of a residual block has the same size as the input of a residual block. This
design was inspired by ref. [358] and was adopted to remove target patterns
step by step. Another feature of the proposed neural network is that it does
not include any pooling layers in the design of the neural network because
the authors want to keep all information from an RD map to estimate noise
levels precisely. The same design concept can be found in refs. [359,360]. The
number of residual blocks is set to two. Additional residual blocks and layers
do not improve performance, but they do increase computational complexity.
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Finally, end-to-end learning is utilized to train all trainable kernels and bias Θ
in the neural network. An input RD map is denoted as RDM = T+N, where
T represents a pure target RD map and N represents a pure noise RD map.
The resulting truncated RD map can be expressed as RDMT = T̃+N, where
T̃ represents the truncated target RD map. The proposed neural network is
a supervised learning algorithm, and the mean square error is employed as a
loss function as follows:

L(Θ) =
D∑
i=1

(Ni − f(RDMT,i; Θ))2, (14.11)

where D is the total number of samples in the training dataset. During the
training process, Adam [361], a gradient-decent-based optimizer, is used to
update all the trainable parameters iteratively. The initial learning rate is set
as 0.00005, and the batch size is set to 128. After 500 epochs, the training
process is completed, and the weights are recorded.

In terms of performance comparison with other existing CFAR methods,
DL-CFAR outperforms all the other CFAR schemes significantly. It is notewor-
thy that, in the regime of low false alarm rates, the performance of DL-CFAR
is clearly superior to that of other schemes. This phenomenon reveals that
DL-CFAR can attain a significant improvement in detection rate even in an
extremely low false alarm rate. In conclusion, although other CFAR schemes
employ guard cells to handle the side-lobe issue, their performance drops be-
cause the fixed-size guard cells cannot handle various types of side-lobes. By
employing neural networks, DL-CFAR can recognize and remove target pat-
terns in different scenarios. As a result, the performance of DL-CFAR is su-
perior to that of all the other CFAR schemes with different SNRs. Moreover,
although it has been revealed that some conventional CFAR schemes per-
form well in specific scenarios, such as CA-CFAR outperforming other con-
ventional CFAR schemes in homogeneous scenarios, these schemes all provide
poor performance in multi-target scenarios. In contrast, by employing neural
networks, DL-CFAR always achieves the best performance in both single-
target and multi-target scenarios. These results suggest that neural networks
enable CFAR detection to adapt to different scenarios. Encouraged by the
success of this work, several follow-up studies [362, 363] are proposed to en-
hance the DL-CFAR’s design; interested readers can refer to those papers for
more details.

14.3 DL-Based Target Tracking, Detection, and
Recognition

The primary benefit of automotive radars compared to other sensors is their re-
liability in challenging conditions, such as heavy rain and dense fog. However,
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the effectiveness of conventional radar is largely influenced by radar process-
ing techniques—including detection, clustering, tracking, and data associa-
tion—which require manual fine-tuning to adapt to different environments.
With the advent of machine learning, learning-based solutions have been
widely implemented across various applications. In particular, advancements
in computer vision have significantly enhanced object detection and tracking
performance using cameras. Therefore, integrating learning techniques into
radar systems to improve radar object detection and tracking has drawn at-
tention in recent years.

To this end, one common approach is to replace the conventional signal
processing-based extended Kalman filter (EKF) method for trajectory track-
ing and prediction in the radar system with a deep neural network (DNN)-
based method, in which a sequence of range-Doppler-angle (RDA) maps is
used as the input for generating the target tracking trajectories. For exam-
ple, in ref. [364], a learning-based architecture for tracking indoor humans
was proposed by replacing the overall EKF with the learning-based architec-
ture. Specifically, as shown in Figure 14.4, by using a sequence of RDA maps,
the learning-based architecture first conducts the conventional denoising to
remove undesired clutter or static reflections. Then, the clustering based on
the common density-based spatial clustering for applications with noise (DB-
SCAN) algorithm is adopted to generate targets from the RDA maps. These
targets are then sent to the DNN-based tracker to generate tracking trajec-
tories of targets, where the tracker proposed in Figure 14.4 could be either a
denoising autoencoder or a sequence-to-sequence autoencoder, as illustrated
in Figure 14.5. Note that when considering K radar observations of K con-
secutive time-slots, the input Z1:K consists of the observed ranges, Doppler
velocities, and angles of these K time-slots from the radar. Then, the output
X̂K would be the K consecutive predicted locations of the targets. It should
be noted that the approach described in Figure 14.4 is only used to gener-
ate tracking trajectories of targets. However, the association of targets to the
trajectories need to be additionally handled by usingthe Hungarian algorithm
with Euclidean distance or some other approaches. More implementation de-
tails can be found in ref. [364].

While the aforementioned approach replaces the prediction of tracking
trajectories with a learning-based approach, it target detection still relies on
the conventional clustering, i.e., the DBSCAN algorithm. Then, to further re-
place the target detection with learning-based approaches, the introduction of
the famous You Only Look Once (YOLO) for object detection is commonly
adopted, leading to a system in which both target detection and tracking
are performed with learning-based architectures. Serving as a great example,
ref. [365] proposed a novel DL-based multi-target detection and tracking ar-
chitecture, in which YOLO is adopted for target detection and Deep Simple
Online and Realtime Tracking (D-SORT) is used for tracking. It should be
noted that while YOLO is known for providing good performance for target
detection, it also provides object recognition functionality at the same time.
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FIGURE 14.4
Illustration of learning-based architecture for tracking (copyright from ref.
[364]).

FIGURE 14.5
Illustration of the architectures of the trackers (copyright from ref. [364]).

As a result, when adopting YOLO for detection, the types of targets could
also be predicted as a byproduct.

Specifically, as shown in Figure 14.6, a learning-based detection and track-
ing framework was developed by using YOLO and D-SORT, where the input
of the framework is RDA maps of Nframe time-slots. Then, as a full RDA map
is overly complex for subsequent processing and the complete Doppler domain
information has less impact on target tracking and detection, the Doppler do-
main is compressed by selecting RDA bins with higher Doppler velocities to
form the enhanced RA (ERA) map, defined as:(

MERA
P

)
n,q

= max
m

(
MRDA

P

)
n,m,q

, n = 1, ..., N, q = 1, ..., Q, (14.12)

where
(
MRDA

P

)
n,m,q

is a RDA bin, with n, m, and q being the indices of

range, Doppler velocity, and angle. After the preprocessing, since D-SORT is
designed to associate detected targets across different time-slots and assign
them unique identities (IDs) for tracking, the ERA map is first processed by
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FIGURE 14.6
Illustration of learning-based framework for target tracking and detection
(copyright from ref. [365]).

YOLO for target detection. The detected targets are then passed to D-SORT
for tracking.

The details of the learning-based architecture for target tracking and detec-
tion are illustrated in Figure 14.7. Specifically, as YOLO is a machine learning
model composed of convolutional and residual layers, its primary function is
to detect objects and classify them by treating the input as an image and
leveraging image-like features. In our case, the ERA map provides a 2D repre-
sentation of objects through angle and range information. This allows YOLO
to interpret the ERA map as an image and perform object detection. The out-
put includes object categories, bounding boxes that define object sizes, and
confidence scores that reflect YOLO’s certainty in its detections. Since multi-
ple bounding boxes can be present in an ERA map, the number of detected
objects is inherently determined by the number of bounding boxes.

After the target detection, the detected targets by YOLO is fed to the
D-SORT for trajectory tracking. Specifically, D-SORT is a tracking algorithm
that utilizes Kalman filtering on images and performs frame-by-frame object
association using the Hungarian method. The association metric considers
both motion and appearance information. However, the performance of the
conventional D-SORT is constrained by false positives caused by unreliable
objects. Thus, the D-SORT in Figure 14.6 is modified by incorporating a two-
stage low-confidence filtering (LCF) mechanism [366]. Precisely, as shown in
Figure 14.6, the low confident filtering includes a two-stage filtering which is
with a detection confidence threshold td and an average detection confidence
threshold tavg. In the first stage of LCF, the detected targets from YOLO
are evaluated based on their confidence levels. If the confidence level exceeds
td, the target is passed to D-SORT; otherwise, it is discarded. In the second
stage of the LCF, a tracked target is evaluated by its average confidence level
of a sequence of timeframes (t), ..., (t−τ), where t is the current timeframe for
deciding whether a tracked object should be removed and τ is a set parameter.
Then, if the average confidence level is larger than tavg, this tracked target is
kept; otherwise, the tracked target is discarded. As a consequence, this LCF
mechanism allows for a lower td to reduce missed detections while increasing
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FIGURE 14.7
Illustration of the architecture for target tracking and detection (copyright
from ref. [365]).

tavg to filter out false-positive tracks by increasing td.
As mentioned above, the radar target detection based on radar images and

YOLO not only can detect targets, but also can recognize the types of targets.
Such target recognition is significantly helpful for many applications, includ-
ing autonomous vehicles and intelligent transportation. However, as YOLO
focuses mainly on the detection part, it target recognition commonly has
some drawbacks. To remedy this, a common approach is to append YOLO
with some additional learning-based modules to fix the recognition results of
the standard YOLO. For example, in ref. [367], a YOLO-based object recog-
nition approach was proposed by using radar range-angle (RA) maps as the
input, where YOLO is concatenated with a recheck module. The overall object
recognition system is then called YOLO-ORE (YOLO-Object REcheck) which
consists of three main modules: radar image generation module, YOLO-based
object recognition module, and object recheck module.

The overall YOLO-ORE system is shown in Figure 14.8. For radar image
generation, a method called the target highlight technique (THT) is intro-
duced, which converts the RA map produced by the radar system into a
radar image (RR map) while enhancing potential targets. This radar image
is then processed by a YOLO model to generate an initial object recogni-
tion result. However, YOLO’s output may include overlapping detections and
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FIGURE 14.8
Illustration of the YOLO-ORE system (copyright from ref. [367]).

misclassification errors due to unreasonable overlaps between detected ob-
jects or incorrect target identification. To address these issues, the recognition
results from YOLO are further processed by an object recheck system to
eliminate overlapping and misclassification errors. More details of the design
principle of the recheck module can be found in ref. [367]. Finally, it can be
observed that the aforementioned target recognition approaches are basically
using radar RA maps, which resemble the camera images. Thus, the recog-
nition is conducted based on computer vision techniques. However, a radar
system could have its own special features that help conduct object recogni-
tion from different domains. For example, ref. [368] adopts a 4D image radar
that can conduct target recognition by using the spatial multi-representation
offered by the 4D image radar. In addition, ref. [369] conducts the target
recognition by using special micro-Doppler features of targets. These micro-
Doppler features come from the small vibrations of targets, e.g., motor engines
and turbines, and they can be captured by radar systems with high Doppler
resolution.

14.4 DL-Based Vital Sign Monitoring

Besides the above radar-related applications enabled by learning-based solu-
tions, we aim to introduce another radar research area, vital sign monitoring,
in this section due to the increasing attention in this area recently. Specifically,
vital sign monitoring plays a crucial role in assessing a patient’s health status
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by providing real-time physiological information. While traditional methods
such as electrocardiography (ECG) and respiratory inductance plethysmogra-
phy (RIP) rely on contact-based devices, there has been growing interest in
non-contact alternatives due to their advantages in patient comfort and con-
tinuous monitoring feasibility. Among various non-contact approaches, radar-
based techniques—particularly those utilizing FMCW radars—have emerged
as a practical solution due to their robustness against thermal noise and inde-
pendence from external lighting conditions. However, existing FMCW radar-
based methods often suffer from unstable and inaccurate vital sign estimation,
especially in low SNR environments. To address this limitation, a pioneer-
ing work [370] introduced a novel DL-aided Newtonized orthogonal matching
pursuit (NOMP) framework, which integrates neural networks as denoisers to
enhance signal quality and improve estimation accuracy in low-SNR condi-
tions. This approach leverages DL’s capability to recognize structured signal
patterns even in noisy environments, thereby enabling more reliable heart rate
and respiratory rate detection. In this work, an FMCW radar waveform em-
ploys a chirp as the transmitted signal, which is a sinusoid whose frequency
increases linearly with time, is considered to perform non-contact vital sign
monitoring. To be more specific, a chirp can be characterized by a start fre-
quency fc, bandwidth B and duration T , expressed as follows:

s(t) = ej(2πfct−πB
T t2). (14.13)

Through comprehensive over-the-air (OTA) experiments, we validated the ef-
fectiveness of the DL-aided NOMP scheme and demonstrated its superiority
over conventional methods. This work represents a significant advancement
in radar-based vital sign monitoring, offering an energy-efficient and accurate
solution for continuous health assessment. After the reflection by an object,
the received chirp is delayed by a range-dependent value td of the transmitted
signal, being expressed as follows:

r(t) = ej(2πfc(t−td)−πB
T (t−td)

2). (14.14)

Suppose that there is an object situated at a distance of R0 to the radar but
there are slight range variations around R0 due to the chest wall displacement

and the heart wall displacement. Then td can be further expressed as 2(R0+xt)
c ,

where xt is a time-varying value representing the distance variation around
R0 and c is the speed of light. To extract the range information of the object
and infer vital signs from the obtained range information, the beat signal b(t)
can be obtained by mixing and filtering r(t) and s(t), which can be expressed
as:

b(t) = ej(2πfct−πB
T t2)−j(2πfc(t−td)−πB

T (t−td)
2)

= ej(2πfctd+2πB
T ttd−πB

T t2d)

≈ ej(4π
B(R0+xt)

cT t+ 4π
λ (R0+xt)) = ej(2πfbt+ϕb).

(14.15)
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In Eq. (14.16), it is obvious that the range information can be extracted by
analyzing the phase term of the beat signal. Suppose that the imaginary and
real parts of a complex beat signal are Q(t) and I(t), respectively. Then,

ϕb = unwrap

[
tan−1(

Q(t)

I(t)
)

]
=

4π

λ
(R0 + xt).

(14.16)

The output phase obtained from tan−1 is wrapped in the range [−π, π]. How-
ever, the phase can change beyond the range because of xt, which is a physical
displacement that can be greater than λ

4 . Therefore, an unwrap function can
be employed to obtain the actual displacement. In vital sign estimation tasks,
by applying several chirps in continuous time, which is similar to the sampling
of ϕb, we can obtain a sequence of distances {R0+xt}nt=1 and as a result, also
obtain the distance variation {xt}nt=1 by the phase difference ∆ϕb. Suppose
fr and fh are breathing rate and heart rate of the participant, we can con-
sider the displacement sequence {xt}nt=1 as a vibration due to heartbeat and
respiration; this displacement sequence varies according to the two frequency
components −fr and fh. Hence, we can further express the equation as follows:

Xb = {xt}nt=1 = St + Zt

= Arsin(2πfrt+ ϕr) +Ahsin(2πfht+ ϕh) + zt.
(14.17)

where Ar and Ah are signal amplitudes for breathing and heartbeat, ϕr and ϕh
are starting phases of sinusoids for breathing and heartbeat, Zt ∼ N (0, σ2),

respectively. In this work, SNR is defined as |Ar|2
σ2 . The SNR difference be-

tween heartbeat and breathing is set as 5 dB, referencing the guide provided
by TI and further confirmed through over the air experiment. Overall, the
vital sign estimating problem can be transformed into a frequency estimation
problem to infer breathing rate and heart rate in Eq. (14.17).

To estimate respiratory and heart rate frequencies from an observation
sequence, Texas Instruments (TI) employs simple bandpass filters. However,
this method is highly sensitive to noise, misalignment, and interference, lead-
ing to imprecise and unstable results. Moreover, fixed cutoff frequencies (6–30
BPM for respiration, 48–120 BPM for heart rate) limit applicability to in-
dividuals within this range, restricting practical deployment. To overcome
these limitations, the authors in this work adopt NOMP for improved es-
timation. While NOMP enhances accuracy, it struggles in low SNR condi-
tions, impacting power efficiency. Observing that target sinusoidal patterns
remain discernible even at low SNR, the authors further integrate a neu-
ral network (NN) as a denoiser to enhance observation quality and improve
NOMP performance. NOMP iteratively refines frequency estimates by first
searching a discrete basis set and then applying Newtonized coordinate de-
scent to mitigate basis mismatch errors. Iterations continue until the differ-
ence between the estimated and observed signals falls below a predefined
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threshold. To improve performance in low-SNR conditions, the authors pro-
pose a DL-aided NOMP framework, addressing two key objectives: (i) iden-
tifying the optimal domain for denoising and (ii) determining the best NN
denoiser architecture. To do so, six combinational schemes are developed,
including TD-CNN-NOMP, TD-DNN-NOMP, TD-LSTM-NOMP, FD-CNN-
NOMP, FD-DNN-NOMP, and FD-LSTM-NOMP, where “TD” and “FD” in-
dicate time or frequency-domain denoising. Supervised learning is employed in
this work to learn the mapping from low-SNR input to high-SNR samples to
achieve the aim of the developed model. Simulation results demonstrated that
TD-CNN-NOMP can outperform other NN-based schemes significantly, even
in a low SNR region, achieving the goal of enhancing power efficiency. More-
over, through an actual implementation, the superiority of TDCNN- NOMP
in a low SNR region is also verified, achieving the aim to develop DL-aided
NOMP schemes.



15

DL-Based Interference
Mitigation in Radar Systems

15.1 Overview of DL-Based Interference Mitigation in
Radar Systems

Based on our discussion in Chapter 8, one can notice that there are still some
limitations when using traditional signal processing methods for interference
mitigation in radar systems. This is especially true in the case that we need
real-time processing capabilities or in the case that the observed data in a
new environment is quite limited to obtain robust statistics, which will be
further used to identify and suppress interferences. In both cases, deep learn-
ing (DL)-based solutions might be able to help for more efficient and effective
interference mitigation in radar systems. More specifically, the following three
limitations are observed as the deficits of traditional interference suppression
techniques: (1) reliance on domain knowledge and the interference characteris-
tics; (2) their inability to generalize; and (3) complexity resulting from detect-
ing the precise location of the interference, and thus suggesting the usages of
DL-based solutions alternatively. There is already ample literature discussing
the usage of DL-based solutions from the following two perspectives:

Intelligent processing: By integrating artificial intelligence technologies,
intelligent processing is applied to signals that contain electronic interference,
environmental clutter, and radar target echoes. This approach extracts high-
dimensional features of interference and clutter, thereby mitigating their im-
pact and enabling intelligent detection, tracking, and identification of radar
targets. Intelligent processing is key to cognitive intelligent radar, fundamen-
tally leveraging artificial intelligence (AI) technologies and using deep neural
networks to replace traditional detection, tracking, and identification algo-
rithms. It can even achieve integrated detection-tracking-identification, uncov-
ering deep features hidden in data that are difficult for humans to intuitively
understand.

Intelligent scheduling: Using prior knowledge and real-time cognitive
information, the results of intelligent processing are evaluated for efficiency,
and predictions and reasoning are performed for intelligent decision-making.
This enables multi-level intelligent scheduling of radar tasks, countermeasure
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strategies, system resources, and processing algorithms, ultimately achieving
closed-loop self-evolution of radar detection capabilities. Intelligent scheduling
plays a central role in cognitive intelligent radar, functioning similarly to the
human brain by analyzing and judging the processing results based on mem-
ory and experience, and making intelligent predictions about future changes
in the electromagnetic environment. This determines the next set of tasks,
waveforms, receiver filters, and processing algorithms that the radar will use,
maximizing overall detection performance under resource constraints.

Following the above two directions, DL-based radar interference mitigation
methods are widely discussed and already provide several state-of-the-art so-
lutions to aid traditional methods. To let readers catch up with this tendency
efficiently, we will further address the above two directions in the rest of this
chapter.

15.2 DL-Based Intelligent Signal Processing

To employ DL-based solutions to aid interference mitigation in modern radar
systems, a straightforward idea is to employ a trained DL module in the radar
receiver as an “intelligent filter” to filter out interference signals before nor-
mal radar receiver processing. On the one hand, one can see a clear difference
between the interfered signal and the normal signal in a certain domain. On
the other hand, finding an appropriate domain that can best distinguish the
interfered signal and the normal signal still remains a difficult challenge to
traditional radar signal processing methods, especially since the aforemen-
tioned appropriate domain is often not a common time, frequency, or spatial
domain, but some other high-dimensional domains. Thus, estimation of deep
features of interference primarily leverages the feature extraction capability of
deep neural networks, transforming low-dimensional features of interference
signals into high-dimensional feature spaces. By combining classifiers and de-
tectors, the deep features of interference are decoded, enabling recognition of
interference types and estimation of parameters.

For example, one pioneering work to investigate DL-based radar interfer-
ence mitigation is ref. [371]. In ref. [371], authors consider a common frequency
modulated continuous wave (FMCW) radar system to transmit a radar signal
consisting of k linear frequency chirps as:

f(t) = fC + α(t− kTchirp), (15.1)

where the time-domain received signal can be further presented as ϕ(t) =

2π
∫ t

0
f(t)dt = 2π(fCt +

1
2αt

2 − αkTchirpt). In Eq. (15.1), Tchirp is the chirp

duration, α = BSW

Tchirp
represents the slope of the FMCW waveform since BSW

is sweep bandwidth, and fc is the carrier frequency of the transmit signal.
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To remove high-frequency signals, an anti-aliasing filter is often used in the
receiver as:

ϕB(t) = ϕ(t)− ϕ(t− τ) = 2πfCτ − πα(τ2 − 2τtk), if τ < t < Tchirp. (15.2)

However, in typical road usage, several vehicles with FMCW radar might in-
terfere each other and consequently degrade each radar’s performance in terms
of range and velocity estimation. Moreover, the above anti-aliasing filter can-
not completely remove this irregular interference. To tackle this situation,
this paper proposes a DL module to filter interference before normal range
and velocity estimation, thus maintaining the estimation performance in such
congested scenarios. Specifically, the proposed DL architecture is built on
the combination of bi-directional gated recurrent units (GRUs) and attention
blocks, as shown in Figure 15.1. By doing so, the employed Bi-directional GRU
can be used to extract the time-domain dependency of interfered signals and
also get rid of the gradient vanishing problem, and then the attention block
can further locate and then isolate the interference signal precisely to restore
the desired signal without interference to achieve the goal. MSE is used to
construct the loss function to allow alternate direction method of multipliers
(ADMM) optimizer to obtain optimal trainable weight in the training stage
with ample training samples. Then the model is ready to use in the receiver
for real-time interference mitigation purposes. Simulation results suggest that
14 dB singal-to-interference-plus-noise ratio (SINR) gain can be provided with
the proposed method compared to the original interfered signals, and the per-
formance outperforms commonly used radar interference mitigation methods
by at least 8 dB. Moreover, with minor modifications, the proposed method
can also be used to serve orthogonal frequency division multiplexing (OFDM)
radar, showing the flexibility of the DL-based solutions.

Another representative work in this direction is ref. [372], which shows the
incorporation of DL-based and traditional solutions to yield better operational
efficiency. Specifically, this work considers the radar signals after dechirping,
which is a widely used signal processing mechanism in FMCW radar systems
to reduce the sampling requirement for analog-to-digital converters. The radar
signal after dechirping can be expressed as:

y(t) = s(t) + f(t) + n(t), for 0 < t < TSW (15.3)

where n(t) is the thermal noise, s(t) =
∑N

k=1 σke
j2π(−fcτk−Kτkt+

1
2Kτ2

k) is the

desired signal, and f(t) = F lp[p
∗(t)

∑M
m=1 fm(t)] represents interferences. In

Eq. (15.3), TSW is the sweep duration, fc is the center frequency, K is the
chirp rate of FMCW waveform, and τk is the time-delay of the signal from
the k th target. p∗(t) is the reference signal used for dechirping, fm(t) is
the m-th interference and F lp represents low-pass filtering operation. In this
work, the aim is to remove interference signals with different chirp rates, CW
interference, and transient interference by capturing and removing interference
with specific patterns to maintain the normal estimation performance of the
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FIGURE 15.1
Deep learning architecture (copyright from ref. [371]).

radar system. Specifically, the authors in this paper notice that the difference
between desired signals and interfered signals becomes compelling in the time-
frequency domain after a short-time Fourier transformation (STFT). As a
result, the workflow developed in this paper is shown in Figure 15.2, where
the STFT is taken as a data preprocessing step before inputting into a neural
network, and then the inverse STFT is employed to transform the output of
the neural network back to the time-domain for normal radar signal processing
without interference. Compared to the method in ref. [371], one can notice that
domain knowledge really helps to simplify the neural network architecture
since the pattern is more compelling in the time-frequency domain compared
to the original time-domain. Consequently, a relatively simple neural network
architecture (i.e., convolutional neural network (CNN) only) is good enough
to finish the task by identifying and removing interference signals. Note that
this is especially useful when it comes to limited data sample scenarios, since
complex neural network architecture often needs more data samples to train
to avoid over-fitting drawback.

Similar to the above works, a lot of follow-up works have been developed
to investigate the usage of DL-based solutions in the radar receiver against
different interference sources and in different scenarios. Ref. [373] introduces a



344 DL-Based Interference Mitigation in Radar Systems

FIGURE 15.2
Signal processing flow of our propose approach for interference mitigation (IM)
(copyright from ref. [372]).

novel approach to mitigate interference in automotive radar systems through
the application of DL techniques, specifically utilizing a recurrent neural net-
work (RNN) model with GRU architecture. In autonomous driving, radars
play a crucial role in detecting target ranges and velocities by analyzing trans-
mitted and reflected signals. However, the presence of interference signals can
significantly elevate the noise floor, impairing the detectability of target ob-
jects. While previous studies have aimed to cancel interference or reconstruct
original signals, conventional signal processing methods often face challenges
and limitations in effectively addressing these issues. The proposed method
demonstrates high performance across various interference conditions while
maintaining low processing times. Notably, it is positioned as the first DL
approach to mitigate interference in the time domain for radar systems. By
leveraging advancements in DL, which have shown remarkable success in image
and language processing, this technique effectively reconstructs transmitted
signals even amidst diverse interference scenarios. The reconstructed signals
can then be utilized for object detection via fast Fourier transform (FFT).
Additionally, the algorithm operates through straightforward matrix calcula-
tions without requiring iterative structures or adaptive thresholds, enhancing
its efficiency. Experimental results indicate that this DL-based method out-
performs existing algorithms in environments where noise and interference
coexist, thereby addressing a critical challenge in enhancing the reliability
and performance of automotive radar systems essential for safe autonomous
driving. Ref. [374] explores quantization techniques for CNN-based denoising
and interference mitigation in automotive radar systems, specifically address-
ing the challenges posed by the increasing number of radar sensors and the
unregulated frequency band, which leads to inevitable mutual interference.
Given that specialized radar sensor hardware typically has strict resource con-
straints, including limited memory capacity and computational power, the au-
thors focus on optimizing CNN models to fit these limitations. They analyze
the quantization of both weights and activations across different CNN ar-
chitectures to reduce memory requirements for model storage and inference.
The study compares models with fixed and learned bit-widths, employing
two methodologies for training quantized CNNs: the straight-through gradi-
ent estimator and training distributions over discrete weights. The findings
highlight the significance of using small real-valued base models for effective
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quantization, demonstrating that learned bit-widths can yield significantly
smaller models, achieving a memory reduction of approximately 80% com-
pared to real-valued baselines. For practical implementation, the authors rec-
ommend an 8-bit representation for weights and activations, resulting in mod-
els that occupy only 0.2 megabytes of memory. Utilizing real-world FMCW
and chirp sequence (FMCW/CS) radar measurements with simulated interfer-
ence, the research illustrates that exceptionally small models can be quantized
without substantial performance degradation. Furthermore, it shows how dis-
tributions over discrete weights can not only aid in denoising and interference
mitigation but also provide uncertainty estimates for range-Doppler maps.
This work contributes to advancing resource-efficient DL applications in au-
tomotive radar systems, addressing the critical issue of mutual interference in
increasingly crowded electromagnetic environments.

Ref. [375] introduces a novel DL-based approach for interference mitiga-
tion in FMCW radars, which are essential sensors for environmental sensing
in modern vehicles used for driving assistance and autonomous driving. The
increasing number of radar sensors and the limited frequency bandwidth in-
evitably lead to mutual interference, which can degrade target detection capa-
bilities and pose safety hazards. To address this challenge, the authors propose
a method that employs dilated convolution to enhance the network’s receptive
field, allowing it to capture more contextual information from the radar sig-
nals. Additionally, they implement a designated contrastive learning strategy
during training, which improves the network’s ability to distinguish between
interference and desired signals. The results from both numerical simulations
and experimental data processing reveal that the dilated convolution-based
IM network significantly outperforms traditional convolution-based networks,
achieving higher signal-to-interference-plus-noise ratio (SINR) and improved
target detection rates. Furthermore, the designated contrastive learning strat-
egy contributes to more stable interference mitigation performance without
adding complexity to the network, thereby facilitating faster signal processing.
This research contributes valuable insights into DL applications for FMCW
radars, addressing the critical need for effective interference mitigation in in-
creasingly crowded automotive environments. Ref. [371] presents a novel DL-
based approach for mitigating interference in automotive radar systems, which
is essential for enhancing the safety and reliability of autonomous driving. The
authors address the critical challenge of increased noise floors caused by inter-
ference signals, which significantly impair the detectability of target objects.
While many previous studies have focused on traditional methods for can-
celing interference or reconstructing original signals, there has been limited
exploration of DL techniques in this area. In this work, the authors enhance
existing DL algorithms by incorporating an attention mechanism, which im-
proves the model’s ability to focus on relevant features in the radar signals.
The proposed method is applied to both OFDM and FMCW radar environ-
ments, demonstrating its versatility and effectiveness across different radar
technologies. Experimental results indicate that the DL-based method out-
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performs existing interference mitigation approaches, showcasing its potential
for improving target detection in complex automotive scenarios. By addressing
the pressing need for robust interference mitigation solutions in increasingly
crowded electromagnetic environments, this research contributes significantly
to the field of autonomous driving. Additionally, the implementation of this
work is made available on GitHub, facilitating further exploration and val-
idation by the research community. Ref. [376] presents a novel approach to
mitigate automotive radar interference using a generative adversarial network
(GAN). Unlike previous methods that address interference in the time do-
main, this approach focuses on recovering the complex signal in the frequency
domain, specifically on the complex range profile obtained after the first fast
Fourier transform of fast-time samples (RFFT spectrum). The proposed GAN
employs gated convolution and an attention mechanism, enabling the genera-
tor network to learn both amplitude and phase information for missing data
from the remaining signal. This approach is designed to handle more complex
and diverse interference scenarios, including cases where multiple chirps are
completely disturbed. Experimental results demonstrate that the proposed
method significantly improves the SINR and maintains robustness in severely
disturbed scenarios, even those more complex than the training dataset. This
GAN-based approach addresses limitations of previous methods, such as the
potential lack of robustness in preserving target peak values in CNN-based
approaches, and the insufficiency of linear predictive coding (LPC) in sce-
narios with widespread interference across multiple chirps. The authors’ work
contributes to the growing body of research on DL applications for radar in-
terference mitigation, offering a promising solution for handling complex and
random interference patterns in FMCW/CS radars. While providing increas-
ingly better performance, the aforementioned methods are applicable when
there is sufficient training data. However, when training samples are limited,
neural networks face overfitting issues, leading to a sharp decline in recogni-
tion performance. Refs. [377] and [378] propose solutions for these challenges:
the former suggests an interference classification method based on a Siamese
network, and the latter introduces a recognition method combining weighted
ensemble CNN (WECNN) and transfer learning, enabling effective interfer-
ence recognition in small-sample conditions.

If we further consider another common type of interference, jamming,
there has also been recent progress in using DL-based solutions for anti-
jamming purposes. Specifically, anti-jamming processing methods based on
feature mining primarily focus on exploiting differences between interference
and targets in low-dimensional feature spaces (e.g., time, spatial, and Doppler
domains). However, when the target and interference become similar in these
low-dimensional feature spaces, the aforementioned methods may fail. Deep
neural networks have the capability to uncover differences between signals in
high-dimensional feature spaces. Therefore, developing methods that lever-
age deep neural networks to distinguish between interference and targets
in high-dimensional feature spaces is a critical and promising direction for
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future research. For example, based on CNNs, ref. [379] proposes an end-
to-end target detection network in interference scenarios, enhancing target
detection performance under intermittent sampling and forwarding jamming.
Similarly, ref. [378] also focuses on the jamming signal classification problem
and further discusses the impact of limited training data samples. To tackle
the performance degeneration when employing normal CNN architecture, a
specialized CNN is proposed to allow training convergence even with limited
training data sample conditions for practical usages. Besides CNN architec-
ture, a famous object detection network (i.e., YOLO 5 [380]) is also employed
to capture interference signal in the time-frequency domain after STFT op-
eration in ref. [381]. Furthermore, when it comes to multi-dimension classifi-
cation, ref. [382] focuses on the pseudo noise code-integrated linear frequency
modulation chirp jamming detection to protect normal radar functionality.
In this work, besides in-phase and quadrature representations of the received
signals, the time-frequency distribution, which can be obtained by performing
the Choi–Williams distribution transformation, is employed to provide extra
information for unknown jammer detection. The workflow proposed in this
work is shown in Figure 15.3. One can notice that using time-frequency distri-
bution, an outlier detector is performed first to catch the combinations of the
reflected and disguised signal. If passing this outlier detection, an automatic
modulation classifier is then further employed to distinguish whether the pure
signal belongs to the pure reflected signal or the pure disguised signal trans-
mitted by the unknown jammer. Simulation results confirm that the proposed
method can provide a higher detection rate with a lower false alarm rate in
different signal-to-jammer-noise-ratio conditions, outperforming the existing
jammer detection method. Ref. [383] also proposes a specialized neural net-
work architecture, utilizing four parallel 1-D CNNs to extract features from
signal modulus, phase, real part, and imagnary part respectively and a 2-D
CNN to extract features from the time-frequency domain after STFT, then
a fusion network is used to combine the aforementioned extracted features
and perform classification based on those features jointly. Simulation results
confirm that the proposed solution can classify 12 different types of jamming
signals effectively.

Besides the above works, ref. [384] presents a great work by introducing
a learning-based autoencoder into a traditional interference detection filter to
provide improved interference mitigation performance. Specifically, in a typical
chirp sequence radar system, the transmit waveform containing L consecutive
chirps can be expressed as:

Tx(t) =
L−1∑
l=0

x(t− lT ) (15.4)

and an individual transmitting chirp signal is given by:

x(t) = ej2π(fct+0.5αt2)rectT (t). (15.5)
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FIGURE 15.3
Illustration of radar communications in LPI networks with the proposed de-
ceptive jammer detection algorithm. (copyright from ref. [382]).

In Eq. (15.5), fc is the carrier frequency, α = B/T denotes the slope of
the transmit signal with B and T denoting the sweep bandwidth and chirp
duration, and rectT (t) is the square pulse of duration T . For l th chirp, the
echo signal will be delayed by τ from the transmit signal with a normalized
relative Doppler shift d if facing a target, as shown below:

rl(t) = Alx(t+ (t+ lT )d− τ) + vl(t), (15.6)

where Al is the received amplitude, τ = 2R/c, d = 2v/c and +vl denotes
the complex Gaussian noise. In the above equation, R is the distance, v is the
relative radial velocity between the radar and target and c is the speed of light.
Then, in the radar receiver end, by mixing rl with the complex conjugate of
the transmitted signal as ŷl(t) = rl(t)x

∗(t), the ADC samples after filtering
and sampling (assuming the sampling period is Ts and N samples per chirp)
can be obtained as:

ŷl,n ≈ Ale
j2π(−ατ+fcd)nTsej2π(fcdlT ) + vl,n, n ∈ [0, N − 1]. (15.7)

Then, by denoting ȳl,n as the additive in-band interference, the discrete ADC
samples with and without interference can be further expressed as:

yl,n =

{
ŷl,n + vl,n, n ⊆ H
ŷl,n + ȳl,n ++vl,n, n ⊆ K

(15.8)

where H is the set of object reflected samples without interference and K de-
notes the set of samples containing interference. Existing filters can be used to
detect abnormal signal periods and obtain interference-pruned samples. Then,
those samples distributed by interference will be masked before the proposed
neural network is input to perform intelligent interpolation. With the pro-
posed designs, simulation results confirm that the SINR can be improved by
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at least 17 dB after the intelligent interpolation in severe interference sce-
narios, demonstrating the benefits of the proposed learning-based interference
mitigations.

15.3 DL-Based Interference-Aware Cognitive Radar

In addition to previously explored DL methods for radar signal processing,
which primarily focus on suppressing interference within radar receivers, DL
also introduces proactive strategies to address radar interference. One such
strategy is cognitive intelligent radar interference mitigation scheduling, which
integrates cognitive insights about interference with advanced scheduling al-
gorithms. This approach facilitates interference management and resource
allocation by forming a “perception-learning-decision-action” feedback loop,
enabling radar systems to adapt dynamically to complex electromagnetic con-
ditions. Evaluating the performance of anti-jamming strategies is equally es-
sential for measuring the efficacy of these countermeasures. The sections below
detail the essential elements of intelligent resource scheduling and performance
evaluation for anti-jamming applications. Feature-mining-based anti-jamming
methods typically exploit differences in amplitude, spatial distribution, and
other attributes between target echoes and jamming signals to enhance target
detection and identification under electronic interference. Deep neural net-
works, with their superior capability to extract features, enable the exploration
of distinctions between jamming signals and target echoes in high-dimensional
spaces. For instance, one approach utilized a signal direction map under main-
lobe jamming as input and trained the network using the expected signal di-
rection map. By employing error backpropagation, this method created deeper
nulls at interference locations while preserving the main beam, resulting in im-
proved angular measurement accuracy compared to conventional techniques.
Another study introduced an end-to-end target detection network leveraging
CNNs to enhance performance in scenarios involving intermittent sampling
and relay jamming. Additional research has focused on the quantization char-
acteristics of Digital Radio Frequency Memory (DRFM) electronic jamming.
Neural network classifiers have been employed to identify DRFM deception
jamming signals with minimal quantization bits. Further investigation into
the impact of DRFM phase quantization on the jamming signal spectrum led
to the development of an adaptive correlation and generalized likelihood ratio
detection algorithm. This approach utilized error angles of jamming signals
to differentiate between interference and target echoes, extending its appli-
cability to frequency diverse array (FDA)-MIMO radar deception jamming.
However, its effectiveness diminishes with higher quantization bit counts, as
jamming signals increasingly resemble transmitted signals, thereby degrad-
ing target detection performance. While feature-mining-based anti-jamming
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methods excel in low-dimensional feature spaces, their performance is limited
when target and jamming signals are closely aligned. Deep neural networks,
capable of analyzing high-dimensional feature spaces, present new opportuni-
ties for developing sophisticated interference and target discrimination tech-
niques. There is a pressing need for innovative methods that exploit these
high-dimensional spaces to improve jamming and target signal differentiation
through deep neural network architectures.

Intelligent resource scheduling for anti-jamming focuses on the dynamic
and adaptive allocation of radar resources—including frequency, power, and
waveform selection—based on real-time interference and operational demands.
This ensures optimal radar performance, even when encountering unknown in-
terference or advanced jamming techniques. Machine learning and optimiza-
tion algorithms enhance scheduling by learning from past experiences and
adapting to new interference patterns, boosting radar resilience. The primary
challenges in this field include balancing detection precision, response speed,
and resource limitations across diverse electromagnetic environments. To as-
sess the effectiveness of these strategies, especially within reinforcement learn-
ing (RL) contexts, performance evaluation plays a critical role. Key metrics
such as radar detection accuracy, signal-to-noise ratios, and target tracking
performance under various interference scenarios provide insight into the ef-
fectiveness of anti-jamming measures. By analyzing scheduling outcomes and
countermeasure results, systems can iteratively improve responses to jamming
through adaptive learning. Robust performance metrics enable radars to main-
tain reliable operations in dynamic electromagnetic environments, enhancing
anti-jamming capabilities. Collectively, these advancements contribute to a
robust framework for intelligent anti-interference in cognitive radar systems.
This framework supports efficient decision-making and resource management
in response to evolving threats. As advanced jamming techniques such as agile,
swarm, and intelligent jamming become more prevalent, traditional reactive
radar technologies are increasingly insufficient. Proactive cognitive intelligent
anti-jamming methods are now central to addressing complex electronic war-
fare challenges. These methods emphasize agile waveform transmission and
the coordinated management of multi-domain resources across space, time,
frequency, and energy domains. The “cognitive intelligence” aspect involves
the radar’s ability to intelligently manage and optimize resources and pa-
rameters in response to environmental changes, forming the aforementioned
perception-learning-decision-action loop in adversarial scenarios. Intelligent
resource scheduling remains a cornerstone technology for cognitive intelligent
radar systems. Recent research has prioritized three main areas: intelligent
scheduling of waveform parameters, dynamic allocation of power resources,
and frequency domain resource optimization [132].

Specifically, intelligent waveform scheduling refers to the radar’s ability to
dynamically and adaptively adjust transmission signals, including waveform
type, spatial, temporal, and frequency-energy parameters, based on real-time
perception of the external environment. This makes it difficult for adversaries
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to predict radar transmission strategies and intentions. For example, ref. [345]
addresses the problem of data-driven joint design of transmitted waveform
and detector in radar systems by proposing two innovative learning-based
approaches that utilize end-to-end training. The first approach involves al-
ternating between supervised training of the detector for a fixed waveform
and RL of the transmitter for a fixed detector, while the second approach
trains both the transmitter and detector simultaneously, which can poten-
tially accelerate the training process. The authors formulate a radar sys-
tem architecture where both components are implemented as feedforward
multi-layer neural networks, incorporating various operational waveform con-
straints such as peak-to-average-power ratio (PAPR) and spectral compat-
ibility into the design. Unlike traditional radar design methods that often
rely on rigid mathematical models with limited applicability, this work en-
hances radar learning by training the detector using synthetic data gener-
ated from multiple statistical models of the environment, thereby increasing
robustness. Theoretical results presented in the paper establish connections
between alternating and simultaneous training by computing the gradients of
their respective loss functions, while also justifying the use of RL for trans-
mitter training by comparing its gradient to that of an ideal model-based
likelihood function. Overall, the proposed methods demonstrate a significant
capability to adapt transmitted waveforms to varying environmental condi-
tions while satisfying essential design constraints, marking a substantial ad-
vancement in radar system design methodologies. On the other hand, power
resource scheduling involves dynamically adjusting radar transmission power
based on real-time interference information to balance detection and stealth
performance. Increasing transmission power enhances anti-jamming perfor-
mance and detection range but also increases the risk of detection by ad-
versaries. Conversely, reducing transmission power improves electromagnetic
stealth but may compromise detection capabilities. The challenge is to opti-
mize the trade-off between detection and survivability, particularly in the pres-
ence of advanced jamming techniques. Finally, frequency agility in radar oper-
ations—rapid shifts in working frequency between pulses or pulse groups—can
effectively prevent jamming signals from locking onto radar frequencies. In
this direction, ref. [385] introduces a cooperative game theoretic power allo-
cation (CGTPA) strategy aimed at enhancing air defense efficiency within a
distributed multiple-input multiple-output (D-MIMO) radar sensor network
(RSN) for detecting low-altitude targets. The CGTPA mechanism focuses on
precise power management to effectively mitigate variations and fading in the
received signals, which are often caused by multipath effects. By leveraging
the abundant scattering characteristics inherent in multipath environments,
this approach enhances target detectability. The authors introduce the con-
cept of multipath distance difference (MDD), which incorporates errors from
space-based external information, and derive the Neyman-Pearson based de-
tection probability alongside the SINR. SINR is subsequently utilized as a
key metric for evaluating RSN target detection performance, leading to the
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establishment of an optimization model based on the max-min criterion. Given
the non-convex nature of this optimization problem, cooperative game theory
offers a flexible framework for facilitating collaborative detection among in-
telligent antennas within the RSN. The article analyzes the existence and
uniqueness of the core in this cooperative game setting and employs Shapley
values to address the power allocation problem while adhering to fairness prin-
ciples. Additionally, weighted graph techniques are utilized to simplify compu-
tational complexity, resulting in a power allocation scheme that respects both
Pareto optimality and fairness. The numerical results presented in the study
validate the theoretical analysis and demonstrate the effective performance of
the proposed algorithm, which approaches optimal resource allocation meth-
ods with notable immediacy. Frequency domain intelligent scheduling refers
to the real-time sensing of interference frequencies and patterns, followed by
adaptive adjustments of working frequency, bandwidth, and agility speed.
This is crucial in countering increasingly sophisticated, intelligent, and ag-
ile jamming strategies. Recent research has focused on using deep RL and
game theory to solve frequency resource scheduling problems. Ref. [386] in-
troduces a decentralized spectrum allocation approach aimed at addressing
the significant issue of mutual interference among automotive radars, which
has become a growing concern in recent years. The proposed method employs
RL to dynamically allocate frequency subbands to individual radars without
necessitating communication between them, which is crucial given that each
radar operates with limited information. The dynamic nature of the alloca-
tion is essential due to the mobility of the vehicles on which the radars are
mounted. To enhance decision-making, a long short-term memory (LSTM) re-
current network is utilized to aggregate observations over time, enabling each
radar to learn to choose a frequency subband by integrating both current and
past observations. The authors conducted simulation experiments to evaluate
the performance of their approach against other common spectrum alloca-
tion methods, such as random and myopic policies, demonstrating that their
RL-based method significantly outperforms these alternatives. This research
contributes to the broader field of spectrum sharing for automotive radars,
offering an adaptive solution that effectively mitigates mutual interference in
increasingly congested electromagnetic environments, thereby enhancing the
reliability and safety of radar operations in autonomous driving scenarios. In
the above three perspectives, we can see that game theory and deep RL have
been widely used to optimize radar anti-interference/anti-jamming strategies
due to their capability to deliver complex actions based on multiple environ-
mental information (i.e., status). In conclusion, proactive cognitive intelligent
anti-jamming techniques have become essential for countering complex jam-
ming threats. Intelligent resource scheduling, leveraging game theory, RL, and
optimization algorithms, plays a critical role in enhancing radar resilience in
increasingly challenging electromagnetic environments.
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Besides the above perspectives, some advanced works are working on radar
transmitter optimization as well besides radar receiver designs by means of
cognitive radar (i.e., cognitive radar transceiver co-design) for interference
mitigation purposes. Note that in radar systems, the transmitter and receiver
are often co-located in the same device and thus joint optimization or cooper-
ation is much easier and practical compared to communication systems. For
example, refs. [387, 388] are representative works, that propose a closed-loop
perception-action cycle to allow the transmitter to perform waveform adap-
tation based on the spectrum sensing and spectrum interpretation/prediction
results. By employing off-the-shelf spectrum sensing methods, such as the
SBSS method presented in ref. [389], a CNN is built to perform spectrum pre-
diction for future spectrum usages. Based on this result, different transmitter
adaptation methods, such as carrier frequency and start time, can be adjusted
by means of interference avoidance, thus yielding better performance. Specif-
ically, given the predicted time-frequency interference status of the upcoming
cycle, the below cumulated interference cost function is evaluated for optimal
transmitter adaption selection:

IMII =
1∑H

h=1

∑W
w=1mh,w

H∑
h=1

W∑
w=1

mh,wph,w, (15.9)

where h ∈ [1, H] and w ∈ [1,W ] represent the time-domain pixel and
frequency-domain pixel of the considered time-frequency domain image, mh,w

is the binary mask of occupied resources for the waveform adaptation, and
ph,w is the normalized interference intensity of each pixel. With this cost func-
tion, grid-search optimization can be performed to evaluate all possible trans-
mitter adaptation combinations to provide optimal transmitter design with
minimized interference. Similarly, in refs. [390] and [391], RL is introduced
to control the frequency-hopping decision of the radar transmitter based on
the received environment status. Specifically, in the proposed solution, the
radar observes the environment through the received pulses, including the
pulse width of the received pulse, how long has the radar stayed on the same
frequency, and whether it is jammed, then an RL agent, such as Q-table
or DQN, is employed to perform decision-making based on the given sta-
tus to maximize the expected long-term reward. The action defined in this
work is to choose to hop to a different random frequency or not, and the re-
ward considered in this work is the weighted sum of the integration efficiency
factor and the probability of interception factor. By adjusting the weight-
ings, the trade-off between integration efficiency factor and the probability of
interception can be fine-tuned to fit different design requirements and pro-
vide anti-jamming capability. Ref. [392] investigates intelligent strategies for
interference suppression in radar systems operating within complex electro-
magnetic environments, utilizing RL to enhance performance. The authors
establish an interactive loop that models the dynamic interaction between
the radar and its environment, effectively mapping interference suppression
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tasks to various RL components such as interference state sets, method sets,
evaluation criteria across different domains, and principles of interference sub-
state transformation. To implement this framework, two novel algorithms are
developed: Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network
(R-DQN). These algorithms introduce a backtracking Q-value mechanism that
links evaluations at each time step during a training round, thereby improving
the learning process. The study further analyzes the selection probabilities of
optimal implementation sequences for interference suppression and conducts
comparative evaluations among the proposed R-Q learning and R-DQN al-
gorithms against conventional Q learning and DQN in terms of output Q-
values. The numerical results validate the effectiveness and robustness of the
proposed suppression strategies across diverse scenarios, highlighting their po-
tential to significantly enhance radar performance in the face of challenging
electromagnetic interferences. This research contributes to advancing intelli-
gent radar systems by leveraging machine learning techniques to adaptively
mitigate interference, thereby improving operational reliability in complex en-
vironments. Although the above works can already lead to improved spectrum
efficiency by the proposed spectrum allocation or frequency hopping schemes,
the flexibility is limited since the non-overlapping band partition is needed in
advance, and thus the whole learning system will need to be re-trained when
aiming to deploy to a different band setting. Alternatively, ref. [393] provides
enhanced flexibility to such RL-based radar transmitter designs. Specifically,
this work considers the scenario when running a pulse-agile radar in a heavily
congested environment. Unlike the above works, the waveform parameter se-
lection problem is modeled as a continuous control task in this work, allowing
the proposed solution to scale to any wideband and high-resolution setting
without modifications. Using spectrum sensing energy in the time-frequency
domain as the state, the proposed RL agent is trained to suggest the start and
stop frequency for pulse-agile radar usage. Note that via this setting, besides
band selection, the agent can also control bandwidth to adjust radar behavior
based on environmental status and achieved performance. The reward func-
tion consists of two components, bandwidth utilization, and collisions with
other users, to guide the agent to make the decision that maximizes band-
width utilization but minimizes collisions with other users. Moreover, to allow
real-time implementation when using USRP to demonstrate the proposed so-
lution, the neural network architecture is also specially designed to employ
recurrent attention-based structure for its parallel processing capability. The
over-the-air tests confirm that the proposed solution is flexible and can adapt
its behavior to a range of user objectives and priorities for practical radar
deployments.

In ref. [394], a GAN-based neural network is used to generate realistic
waveforms from a training set of already existing waveforms. The synthesized
waveforms show a high similarity with the training dataset waveforms with
negligible cross-correlations to the training waveform dataset, showing that
the proposed model actually learns to generate realistic and distinct radar
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waveforms. Thus, those synthesized waveforms can be used to transmit simul-
taneously with the original waveforms for multi-target tracking with low inter-
ference. Moreover, the synthesized waveforms were also constrained to possess
a constant modulus for practical usages. With a similar idea, refs. [395, 396]
propose the idea to generate an adaptive radar waveform that blends into the
environment and maintains radar functionality simultaneously utilizing deep
generative learning. Specifically, the considered signal model can be expressed
as:

x(t) = αs(t) + n(t) + b(t), (15.10)

where x(t) is the received signal, s(t) is the transmitted signal, α is the at-
tenuation factor, n(t) is the noise, and b(t) is other signal presented in the
radio environment, which can be observed in the receiver. To evaluate radar
detection performance of transmitted signal s(t), the ambiguity function can
be employed and expressed as:

Â(τ, FD) =

∫ ∞

−∞
s(t) exp(j2πFDt)s

∗(t− τ)dt, (15.11)

where τ is the time shift and FD is the Doppler shift. On the other hand, to
evaluate the low probability of detection performance, one can utilize deep
generative learning to generate radar waveform, which is distributively close
to other waveforms presented in the radio environment, thus it is hard to
detect. To do so, conditional GAN is employed to build the loss function as:

min
G

max
D

Ex∼Pb
[D(x|y)]− Ex̃∼Pg|y [D(G(z|y)|y)], (15.12)

where G represents the generator neural network, D stands for the discrimi-
nator neural network, Pb is the distribution of b(t), Pg|y is the distribution of
the generated signal conditional on instantaneous radio environment measure-
ment y, z is a random seed to trigger the generator. To stabilize the training
process, different regularization terms can be added to the above equation to
smooth the loss function. Note that in the above equation, when a signal with
a similar distribution to the b(t) is fed into the discriminator, the discrimi-
nator is designed to give a high score to maximize the loss function (see the
first term). On the other hand, when a generated signal is fed, a low score will
be given to maximize the loss function (see the second term). However, the
goal of the generator is to confuse the discriminator to get a high score using
the generated signals. Thus, until convergence, the generator is well-trained
to provide highly convincing signal, which is similar to other signals in the ra-
dio environment for low probability of detection purposes. Simultaneously, to
guarantee the detection performance when using generated signals, the am-
biguity function will also be optimized during training. Thus, the final loss
function is the weighted sum of Eq. (15.11) and Eq. (15.12), and the weight-
ing can be used to control the generated signal behavior by emphasizing low
probability of detection or detection performance.
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DL-Based Signal Processing in
ISAC Systems

16.1 DL-Based Waveform Design

While the waveform design for integrated sensing and communication (ISAC)
systems is commonly conducted based on traditional optimization-based and
model-based approaches, e.g., approaches discussed in Chapter 10, deep learn-
ing (DL)-based approaches have shown some advantages, especially from the
low-complexity and online adaptivity aspects.

The fundamental idea of using DL to obtain low-complexity design ap-
proach is to replace the sophisticated optimization procedure with some neu-
ral networks (NNs) that can be efficiently implemented in real time. As a
concrete example, ref. [397] considered an uplink ISAC system where the BS
conducts the mono-static sensing and users at the same time transmit the up-
link communication signals of K users to the BS. Then, the design criterion
is obtained by first formulating the sensing rate (i.e., the mutual information
between the environment and sensing signal) and the uplink sum-rate of users,
and then maximizing their weighted-sum function give as:

max
S,wk,∀k

αRs(S) + (1− α)Rc(S,wk,∀k), (16.1)

where Rs(S) is the sensing rate, Rc(S,wk,∀k) is the uplink sum-rate, S is the
sensing signal broadcast by the BS,wk is the uplink precoding of user k, and α
is the tradeoff factor between sensing and communication performance. Since
Eq. (16.1) is in general non-convex, the convectional approach for solving Eq.
(16.1) is to first convert the problem into a sequence of convex optimization
problems, and then solve them. This inherently leads to very high complexity.
Alternatively, when the DL is adopted, the approach is to train a NN that can
directly output the design of S and wk,∀k along with some pre-processing and
post-processing module using unsupervised learning, where the loss function
is defined as:

L = − 1

Ns

Ns∑
q=1

αRs(S̃q) + (1− α)Rc(S̃q, w̃k,q,∀k), (16.2)
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where Ns is the number of training samples, S̃q is the output of the overall
DL-based design module for the sensing signal of training sample q, and w̃k,q

is the output of the DL-based design module for the precoder of user k of
training sample q. The detailed descriptions of the module can be found in
ref. [397]. With the DL-based module, the sensing signal and precoding of
users can be obtained in real time by the relatively simple computation of the
module, rather than solving many convex optimization problems as with the
conventional optimization-based approaches.

Ref. [398] shows another example where using the DL-based approach
can lead to a low-complexity waveform design for ISAC systems. Specifically,
ref. [398] considers a mono-static ISAC system where a BS simultaneously con-
ducts sensing of Q targets and communication with K users using Nt transmit
antennas. Then, the design goal is to design the preocder so that the sensing
beampattern can be optimized while the communication quality of users can
be guaranteed. To this end, the following design problem is considered:

min
w

f(w)

s.t. g(w) ⪯ 0

h(w) = P,

(16.3)

where w is the precoder, f(w) is the beampattern matching error, g(w) is to
force the received signals at users can fall within the correct signal regime for
demodulation, and h(w) = P is the total power constraint. To use the DL to
solve Eq. (16.3), the basic approach is to define the loss function give as:

L = f(w) + λg

Kg∑
k=1

∥ReLU(gk(w))∥2 + λh∥h(w)∥2, (16.4)

where λg and λh are some penalty weights associated to the inequalities and
equalities in Eq. (16.3). It follows that one can construct a NN model, and
then use the above loss function with unsupervised learning to train the NN to
output a suitable precoding vector w for the system. However, the direct use
of NN without resorting to some specific structure and training strategy could
easily lead to inefficient training and/or ineffective design of NN for providing
suitable w.

To resolve this issue, ref. [398] provides a specific NN structure based on
CNN for solving Eq. (16.3), which is illustrated in Figure 16.1. It should be
noted that the use of CNN is because a layer of CNN is more computationally
efficient than that of the regular NN, leading to lower complexity when the
overall NN module with multiple layers could maintain low. In addition to
the special structure in Figure 16.1, a specifically designed training strategy
is also mentioned in ref. [398]. The idea is to include an additional supervised
learning procedure for training before using the regular unsupervised learning
for training. As the precoding design problem can be effectively solved by
using the block coordinate descent (BCD)-based approach in ref. [399] with
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FIGURE 16.1
Illustration of the DL-based design module for symbol-level precoding (copy-
right from ref. [398]).

high complexity, one can use the approach to generate I labeled samples to
construct a training dataset for supervised learning. Then, at the beginning
of the overall training of the NN module, these samples are used to train the
NN in a supervised manner with the loss function being

Lsup =
1

I

I∑
i=1

∥ŵi −wi∥2 + λg

I∑
i=1

Kg∑
k=1

∥ReLU(eg(ŵi) − 1)∥2, (16.5)

where ŵi is the output of NN with sample i and wi is the precoder obtained
by using the BCD-based approach for sample i. Hence, it is clear that the
supervised learning with the above loss function is to let the NN module to
learn from some ground truth samples generated by using the conventional
optimization-based approach, and then proceed with the more general unsu-
pervised learning. This can let the NN be trained with higher efficiency.

The above approaches mainly replace the optimization-based approaches
by using some NN modules that are specifically designed for solving the
problem. However, these approaches directly rely on the insights and domain
knowledge of the original design problems and systems, while the structures
of the original optimization-based approaches are not effectively leveraged. To
better exploit the original optimization-based approaches, by the observations
that the high-complexity optimization-based approaches commonly have iter-
ation structures which help updating the solutions until some stopping crite-
ria are satisfied, the unfolding learning-based approaches have been adopted.
The idea of the unfolding learning is to embed AI models into the original
optimization-based approaches by replacing multiple iterations conducted by
the optimization solver with some NN layers that can be easily accelerated by
parallel computing and other acceleration approaches. The idea of the unfold-
ing learning is illustrated in Figure 16.2. From the figure, it can be observed
that multiple iterations are replaced by a single NN module, where the NN
modules are well-trained to be able to predict what should be done by the orig-
inal iterative updates of the optimization solvers. By doing so, the optimiza-
tion can be significantly accelerated by using NNs. However, the structure and
training approaches of NNs are not coming from nowhere. They indeed follow
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FIGURE 16.2
Illustration of the structure of unfolding learning.

the original structure of the optimization-based approaches. In addition, the
loss functions for training are also derived based on the original optimization-
based approaches. The main reason of maintaining the original structures and
deriving the loss functions from the optimization-based approaches when ap-
plying the unfolding learning is to enjoy both the stability of solutions the
optimization-based approaches as well as the flexibility of learning-based ap-
proaches, making the overall approach to learn from the structures of conven-
tional optimization methods, while outperforming the conventional methods
by involving certain data-driven features. One example of the use of unfolding
learning-based design approach for ISAC systems is discussed in ref. [400].

Finally, when considering to design the waveform with environmental
adaptivity, the use of deep reinforcement learning (DRL) might be a desired
direction. For example, ref. [401] proposes a DRL approach that can adap-
tively change the beamforming weights according to the movement of the
user and target. Specifically, it considers designing the beamforming vectors
w = 1

Nt
[ejθ1 , ..., ejθNt ] for tracking a target while communicating to a user,

where Nt is the number of transmit antennas and θk is the phase shift of
antenna k, quantized by a set Dθ within 0 and 2π. Then, it defines the state
space as S = [θ1, ..., θNt

,Ht], where θk should be at one of the quantized
values of Dθ and Ht is the channel matrix at time t. The action space is
thus the selection of all possible quantized values of θk,∀k. Finally, the re-
ward function at time t is defined as the weighted-sum of the sidelobe level
of the beampattern and the received communication channel gain, given as
rt = −α1 maxϕ∈Φ(P (ϕ,wt))+α2|Htwt|2, where wt is the beamforming vector
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at time t; P (ϕ,wt) is the sidelobe level at angle ϕ and Φ is the set of sidelobe
angle; and α1 and α2 are the tradeoff factors between sensing and communi-
cation performance. With the above, the actor-critic DRL approach is directly
adopted to find the policy for adaptively designing the beamforming vectors.

16.2 DL-Based Resource and Interference Management

The resource and interference management of ISAC systems mainly focuses on
the time-frequency-space management and sharing between different users as
well as different tasks, i.e., the sensing and communication tasks. Then, since
the overall system and environment are dynamic, effective resource manage-
ment commonly relies on providing adaptive resource allocation to different
users and tasks according to the network dynamics and states. This thus nat-
urally leads to the use of DRL for designing an effective resource management
approach that can be adaptive to the network and environment.

Serving as a concrete example, ref. [402] considers a ISAC system where
the tracking tasks and communication tasks compete for time resources. Thus,
the resource management is to determine how much amount of time should
be allocated to conduct tracking for each time interval. Its goal is to develop
a dynamic strategy that can balance between tracking and communication
phases via using DRL. Note that in this ISAC system, the sensing and com-
munication are individually but coordinated implemented, instead of being
integrated. To this end, it considers n users to track and communication, and
consider that the duration of a time interval is T0. Then, by denoting τnt as the
amount of time for tracking user n in time interval t, the remaining amount of
time for communications is τCom

t = T0−
∑N

n=1 τ
n
t , where N is the total num-

ber of targets to track. With this, the communication rate can be obtained as

Rt =
τCom
t B
N log2(1+SNR

n
t (θn, θ̂n)), where B is the system bandwidth shared

by N users, SNRn
t (θn, θ̂n) is the communication signal-to-noise ratio (SNR)

for user n at time t, with θn and θ̂n being the correct and estimated angles for
beamforming the communication signal to the user, respectively. Note that if
θ̂n deviates more from θn, the SNR in general would be lower. However, if we
want to increase the angle estimation accuracy, we might need to spend more
time on tracking phase, which leads to a tradeoff between the time allocation
to tracking and communication phases. With the above, the design problem
becomes:

max
π

∞∑
t=0

γtRt s.t.
∞∑
t=0

γt

(
T0 −

N∑
n=1

τnt

)
≥ 0, (16.6)

where the objective function is to maximize the long-term communication rate
reward, subject to that the overall communication time should be non-zero,
and π is the time allocation strategy we want to develop.

To obtain an effective strategy π, the DRL based on the double Q-learning
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network (DQN) has been developed in ref. [402]. First of all, to resolve the
constraint in Eq. (16.6), one can convert the problem as for each time m, we
want to solve:

min
λm≤0

max
π

∞∑
t=0

γm+t

[
Rm+t + λm

(
T0 −

N∑
n=1

τnm+t

)]
, (16.7)

where λm is the Lagrange multiplier for time interval m, which is time-
varying. Then, to solve this, one can define the state of the system at time
t as S = [s1t , ..., s

N
t ], where snt is the state of user n at time t, given as

snt =
[
τ t−1
n , σ2

t−1,n, λt−1

]
, where τ t−1

n is the allocated amount of time to track
user n at the previous time interval and σ2

t−1,n is the angle estimation vari-
ance of user n at the previous time interval. Then, the action of the system
can be defined as choosing between different amount of time for τ tn,∀n, with
the action space of a τ tn being the quantized set within 0 and T0. Finally, the
reward at time t is defined as:

rt = Rt + λt

(
T0 −

N∑
n=1

τnt

)
. (16.8)

With the above, the DQN of DRL is directly introduced to establish the policy
π, where the ϵ greedy exploration method is adopted.

In ref. [403], the joint power and bandwidth allocation problem for the
multi-user ISAC systems where a BS needs to sensing the positions of M
users, and then communication with the users. In the system, each time period
within the coherence time is split into sensing and communication phases,
where Rm,s(t) is the amount of time for sensing user m and Rm,c(t) is the
amount of time for communication to user m at period t. Then, denoting
Vm,s(t) and Vm,c(t) as the value of services of sensing and communication of
user m at time period t, the reward of the system at time period t is given
as V (t) =

∑M
m=1 ωm,sVm,s(t) + ωm,cVm,c(t), where ωm,s and ωm,c are the

weighting of priority of sensing and communication services of user m. We
denote Nm,s(t) and Nm,c(t) as the number of subcarriers allocated to sensing
and communication services of user m at period t, respectively, and denote
Pm,s(t) and Pm,c(t) as the power allocated to sensing and communication
services of user m at period t, respectively. Then, the goal is to optimize
Nm,s(t), Nm,c, Pm,s(t), and Pm,c(t) so that the overall system reward can be
maximized in a long run. To this end, an actor-critic-based DRL is adopted
in ref. [403]. Specifically, it considers the state vector of user m of the system
as:

sm(t) = [Rm,s(t), Rm,c(t), ωm,s, ωm,c, hm(t)] , (16.9)

where hm(t) is the communication channel of user m at time t. It follows that
the complete state vector of the system is given by s = [s1(t), ..., sM (t)]. Then,
since the optimization is on power and bandwidth allocation, the action at
time t is given as:

a(t) = [a1(t), ...,aM (t)] , (16.10)
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where am(t) = [Nm,s(t), Nm,c(t), Pm,s(t), Pm,c(t)] with all possible candidates
that satisfying the maximum power and bandwidth constraints. With all the
above setup, the actor-critic-based DRL is directly used for obtaining the joint
power and resource allocation strategy of the system.

In ref. [404], the DRL has been used for joint beamforming and resource
management for integrated sensing, communication, and computing (ISCC)
in uplink vehicular networks, where the computing task is introduced by the
need of vehicles to send the acquired data back to the roadside unit (RSU) for
conducting some inference task, e.g., the object recognition. The ISCC vehic-
ular network model is illustrated in Figure 16.3, whereM vehicles conduct the
sensing and uplink communications to a RSU, and the over-the-air computing
technique is used for the vehicles to enable computing at the RSU. Then, the
joint beamforming and resource management problem is formulated in the
way that the transmit communication beamforming of vehicles, the transmit
sensing beamforming of vehicles, and receiving beamforming at the RSU are
jointly optimized for providing effective long-term ISCC performance. We de-
note Wk,c(t) and Wk,s(t) as the communication and sensing beamforming
matrices of vehicle k at time t, and denote uk(t) and sk(t) as the communica-
tion and sensing signals of vehicle k at time t. Then, as illustrated in Figure
16.4, the transmit signal is expressed as x(t) = Wk,c(t)uk(t) +Wk,s(t)sk(t).
With this and denoting P(t) as the receiving beamforming matrix at RSU of
time t, the joint beamforming and resource management problem is expressed
as:

max
P(t),Wk,c(t),Wk,s(t),∀k,t

∑
t

∑
k

∑
k

Rk,com(t)

s.t. MSE(t) ≤ ξ
sensingk(t) ≥ ψ,∀k, t
pk(t) ≤ Pveh,∀k, t,

(16.11)

where Rk,com(t) is the capacity of uplink communication of vehicle k
at time t, MSE(t) is the computational error at time t, sensingk(t)
is the sensing information rate for vehicle k at time t, and pk(t) =
Tr
(
Wk,c(t)Wk,c(t)

H +Wk,s(t)Wk,s(t)
H
)
is the total transmit power of ve-

hicle k at time t.
To solve Eq. (16.11), a DRL learning approach has been proposed in ref.

[404]. Specifically, it defines the state at time t as:

s(t) = {H(t),P(t),a(t− 1)}. (16.12)

where H(t) is the overall channel matrix that collects the uplink channel
matrices of all vehicles and a(t − 1) is the action vector at time t − 1, which
is defined as:

a(t) = {Wk,c(t),Wk,s(t),∀k}. (16.13)

It should be noted that by the approach in ref. [404], the receiving beamform-
ing matrix P(t) is determined directly by the channel matrix H(t). Thus,
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FIGURE 16.3
Illustration of the ISCC vehicular network model (copyright from ref. [404]).

FIGURE 16.4
Transmission Model of the ISCC vehicular network (copyright from ref. [404]).

instead of being an action to determine by the DRL, it is treated as one of the
parameters to define the system state at time t. Finally, the reward function
at time t is defined as:

Rt = λ1
∑
k

Rk,com + λ2ΦMSE + λ3Φsen + λ4Φpow, (16.14)

where Φsen = max(MSE(t) − ξ, 0), Φsen =
∑

k (min(sensingk(t)− ψ, 0)) and
Φpow =

∑
k max(pk(t)−Pveh, 0); and λ1, λ2, λ3, λ4 are some hyper-parameters

to adjust for trade-off between the communication performance, computing
MSE performance, sensing performance, and power. With the above defini-
tions of state, action, and reward function, the policy-based deep deterministic
policy gradient (DDPG) is directly adopted in ref. [404] to obtain the effective
design of beamforming matrices P(t),∀t, Wk,c(t),∀k, t, and Wk,s(t),∀k, t.

Finally, by taking a different aspect of the DRL, ref. [405] designed the
resource and interference management approach by using an unsupervised
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learning framework. Specifically, when considering a BS to serve K users while
sensing the targets in L directions, the transmit signal model for user k is
expressed as

xk(t) = Wk,cuk(t) +Wk,ssk(t) (16.15)

is adopted, where Wk,c and Wk,s are the communication and sensing beam-
forming matrices of user k, and uk(t) and sk(t) are the communication and
sensing signals of user k at time t. Then, we denote the signal covariance ma-

trix matrix as R = E
[∑K

k=1 xk(t)x
T
k (t)

]
for the sensing design criterion, the

beam pattern error and cross correlation pattern, denoted as Lr,1 and Lr,2 are
used, where

Lr,1 =
1

L

L∑
l=1

|d(θl)− P (θl,R)|

Lr,2 =
1

L2−L

L−1∑
l=1

L∑
r=l+1

|P ′(θl, θr,R)|,

(16.16)

where d(θl) is the ideal beam pattern power emission on angle θl, P (θl,R)| =
aH(θl)Ra(θl), P

′(θl, θr,R) = aH(θl)Ra(θr), and a(θl) is the beam steering
vector on angle θl. Subsequently, for the communication design criterion, the
sum-rate is adopted, with C =

∑K
k=1 log2(1 + γk), where γk is the SINR of

the received signal for user k. With the above, the design problem can then
be formulated as:

max
Wk,c,Wk,s,∀k

E

[
K∑

k=1

log2(1 + γk)

]
s.t. Lr,1 + Lr,2 ≤ ξ

K∑
k=1

∥Wk,c∥2F + ∥Wk,s∥2F ≤ PBS,

(16.17)

where ξ is the sensing error performance threshold and PBS is the total power
of the BS. To solve Eq. (16.17), the unsupervised learning approach is adopted.
Specifically, it first defines a NN χ(H, {θl}Ll ;ω) parameterized by ω which
generates the precoders Wk,c, Wk,s,∀k as a function of the channel H and
targeting angle {θl}Ll , and then obtains the Lagrangian problem given as:

L = E

[
K∑

k=1

log2(1 + γk)

]
+ λ1(Lr,1 + Lr,2 − ξ)

+ λ2

(
K∑

k=1

∥Wk,c∥2F + ∥Wk,s∥2F − PBS

)
. (16.18)

Subsequently, the primal-dual update of the NN is adopted, in which each
iteration it conducted the updates of primal and dual variables. Since the
design of the precoders is not directly generated by the NN χ(H, {θl}Ll ;ω),
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the update of the primal variables is to update the parameters ω of the NN.
Thus, for the update of the primal variables at iteration t, the following is
implemented:

ωt = ωt−1 + ηt∇ωL(ωt−1,λt−1), (16.19)

where ηt is the step-size at iteration t. Then, for the update of the dual
variables, it implements the following:

λt = λt−1 − ηt∇λL(ωt,λt−1). (16.20)

The above updates continue until a NN that can generate sufficiently good
precoders is obtained.

16.3 DL-Based Predictive Beamforming-Aided ISAC
Systems

Finally, this chapter discusses a particular sensing-assisted communication
system, namely, the predictive beamforming-aided ISAC system that is highly
appropriate for the adoption of DL-based approach [406]. Specifically, in the
conventional communication systems, the system needs to first estimation
the channel of users before designing the beamforming for communications.
However, such channel estimation creates overhead for the communication
system. On the other hand, with the aid of sensing, the system can determine
the locations and angles of users such that the beamforming of users can be
predicted based on the sensing information. As a consequence, the channel
estimation stage can be removed to reduce the overhead. Such an approach is
known as the predictive beamforming with ISAC system, and since it requires
the prediction of beamforming direction/weights, it is suitable for the use of
DL-based approaches.

To further elaborate the predictive beamforming-aided ISAC system, the
system and design approach proposed in ref. [406] is considered, where an
ISAC-assisted vehicular-to-infrastructure (V2I) system illustrated in Figure
16.5 is considered. In the system, a RSU equipped with Nt transmit antennas
and Nr receive antennas to serve K vehicles is considered. To conduct the pre-
dictive beamforming to improve the communication to vehicles with sensing,
the dynamic optimization of beamforming weights for vehicles is considered.
We denote wk,n as the beamforming weight for vehicle k at time-slot n. Then,
the transmitted signal is given as:

s̃n(t) = Wnsn(t), (16.21)

where Wn = [w1,n, ...,wK,n] and sn(t) = [s1,n(t), ..., sK,n(t)] is the trans-
mitted signal at time t of time-slot n with sk,n(t) being the correspond-
ing transmitted symbol for vehicle k. Then, the protocol illustrated in
Figure 16.6 is considered. In this protocol, we suppose that the beamform-
ing matrix W for time-slot n is optimized at time-slot n − 1 based on the
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FIGURE 16.5
Illustration of the ISAC-assisted V2I system for predictive beamforming (copy-
right from ref. [406]).

FIGURE 16.6
Predictive beamforming protocol for ISAC systems (copyright from ref. [406]).

sensing results so that the expected communication performance at time-slot
n can be guaranteed. Specifically, the transmission within a time-slot is split
into two stages. In the first stage, based on the beamforming matrix optimized
at the previous time-slot, the ISAC signal is transmitted for communications
to vehicles and simultaneously receives the echo signals from vehicles to con-
duct the estimations of their locations. Then, in stage II, the RSU estimates
the motion parameters of vehicles at the current time-slot based on the echo
signals, and then optimizes the beamforming matrix for the next time-slot,
i.e., time-slot n+1. When compared with the conventional beamforming pro-



DL-Based Predictive Beamforming-Aided ISAC Systems 367

FIGURE 16.7
Comparison with conventional beamforming framework (copyright from ref.
[406]).

tocol which requires the transmissions of pilots and beam training overhead
as illustrated in Figure 16.7, the predictive beamforming-based approach can
reduce the overhead as it does not need the periodic channel estimation and
beam training process.

To design the beamforming matrix, the following vehicle mobility model
is considered:

vk,n = vk,n−1 +∆vk,n−1, (16.22)

where vk,n is the average velocity of vehicle k at time-slot n and ∆vk,n−1 is the
variant between vk,n and vk,n−1 which follows certain distribution. We assume
the movements of vehicles follow the quasi-static assumption and consider the
road scenario illustrated in Figure 16.8. As a consequence, the models for the
change of angle ∆θk,n and the change of distance ∆dk,n for vehicle k between
time-slots n− 1 and n can be obtained. Then, by the derivations (see details
in ref. [406]), the predictive beamforming design problem for Wm can be
formulated as an expected communication performance optimization problem
subject to the Cramer-Rao lower bound (CRLB) constraints for both angle
and distance estimation of vehicles, which is expressed as:

max
Wn

E

[
K∑

k=1

log2(1 + γk,n)

]

s.t. E

[
1

K

K∑
k=1

CRLB(θk,n,Wn)

]
≤ γθ, E

[
1

K

K∑
k=1

CRLB(dk,n,Wn)

]
≤ γd,

∥Wn∥2F ≤ Pmax,
(16.23)

where γk,n is the communication SINR for vehicle k at time-slot n; θk,n and
dk,n are the angle and distance of vehicle k at time-slot n; and γθ, γd, and
Pmax are the CRLB thresholds for angle and distance, and the power budget,
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FIGURE 16.8
Illustration of vehicle movement in the system (copyright from ref. [406]).

respectively.
To solve Eq. (16.23), a learning-based approach has been proposed in ref.

[406]. Specifically, it first converts Eq. (16.23) into a penalty-based problem
given as:

max
Wn

F (Wn), (16.24)

where

F (Wn) = E

[
K∑

k=1

log2(1 + γk,n)

]

− λ1

[
max

(
E

[
1

K

K∑
k=1

CRLB(θk,n,Wn)

]
− γθ, 0

)]2

− λ2

[
max

(
E

[
1

K

K∑
k=1

CRLB(dk,n,Wn)

]
− γd, 0

)]2
− λ3

[
max

(
∥Wn∥2F − Pmax, 0

)]2
,

(16.25)

and λ1, λ2, and λ3 are penalty parameters that should be much larger than
0. With Eqs. (16.24) and (16.25), the unsupervised learning is introduced to
solve the problem by considering the following loss function of a sample ωn,i

and the corresponding output of the NN model gωn,i

(
H̃n,i

)
:

L =

NS∑
i=1

f
(
ωn,i, gωn,i

(
H̃n,i

))
, (16.26)

where NS is the number of learning samples; H̃n,i is the estimated chan-

nel matrix with the estimated channel for vehicle k to be given as h̃k,n,i =

G
√
α0d̃

−ξ
k,na(θ̃k,n), where G, α0, and ξ are pathloss modeling parameters, d̃k,n,i
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FIGURE 16.9
Illustration of the LSTM-based beamforming design learning model (copyright
from ref. [406]).

and θ̃k,n,i are the estimated distance and angle for vehicle k, and a(θ̃k,n) is

the steering vector with angle θ̃k,n; and

f
(
ωn,i, gωn,i

(
H̃n,i

))
=

K∑
k=1

log2

(
1 + γk,n

(
ωn,i, gωn,i

(
H̃n,i

)))

− λ1

[
max

(
1

K

K∑
k=1

CRLB
(
ωn,i, gωn,i

(
H̃n,i

))
− γθ, 0

)]2

− λ2

[
max

(
1

K

K∑
k=1

CRLB
(
ωn,i, gωn,i

(
H̃n,i

))
− γd, 0

)]2

− λ3
[
max

((
∥gωn,i

(
H̃n,i

)∥∥∥2
F
− Pmax, 0

)]2
.

(16.27)

With the above loss function, the LSTM-based NN model illustrated in
Figure 16.9 is adopted for the unsupervised learning and beamforming matrix
inference after the training. We note that a similar approach is also discussed
in ref. [407], where the more complex vehicle movements and road situations
are considered.
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Explainability of deep vision-based autonomous driving systems: Review
and challenges. International Journal of Computer Vision, pages 1–28,
2022.

[60] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Control-
lable imitative reinforcement learning for vision-based self-driving. In
Proceedings of the European Conference on Computer Vision (ECCV),
pages 584–599, 2018.



Bibliography 377

[61] Danny Kai Pin Tan, Jia He, Yanchun Li, Alireza Bayesteh, Yan Chen,
Peiying Zhu, and Wen Tong. Integrated sensing and communication
in 6G: Motivations, use cases, requirements, challenges and future di-
rections. In 2021 1st IEEE International Online Symposium on Joint
Communications & Sensing (JC&S), pages 1–6. IEEE, 2021.

[62] An Liu, Zhe Huang, Min Li, Yubo Wan, Wenrui Li, Tony Xiao Han,
Chenchen Liu, Rui Du, Danny Kai Pin Tan, Jianmin Lu, et al. A survey
on fundamental limits of integrated sensing and communication. IEEE
Communications Surveys & Tutorials, 24(2):994–1034, 2022.

[63] Yuanhao Cui, Fan Liu, Xiaojun Jing, and Junsheng Mu. Integrating
sensing and communications for ubiquitous IoT: Applications, trends,
and challenges. IEEE Network, 35(5):158–167, 2021.

[64] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and
Eftychios Protopapadakis. Deep learning for computer vision: A brief
review. Computational Intelligence and Neuroscience, 2018.

[65] Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapana-
halli, Gustavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan,
and Joseph Walsh. Deep learning vs. traditional computer vision. In
Science and Information Conference, pages 128–144. Springer, 2020.

[66] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the
usages of deep learning for natural language processing. IEEE Transac-
tions on Neural Networks and Learning Systems, 32(2):604–624, 2020.

[67] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
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